<span class="searchmatch">Lorentz</span> <span class="searchmatch">invariants</span> plural of <span class="searchmatch">Lorentz</span> <span class="searchmatch">invariant</span>...
<span class="searchmatch">Lorentz</span> <span class="searchmatch">invariant</span> Wikipedia <span class="searchmatch">Lorentz</span> <span class="searchmatch">invariant</span> (plural <span class="searchmatch">Lorentz</span> <span class="searchmatch">invariants</span>) (mathematics, relativity) A quantity that does not change due to a <span class="searchmatch">Lorentz</span> transformation;...
invariance <span class="searchmatch">Lorentz</span> <span class="searchmatch">invariant</span> <span class="searchmatch">Lorentz</span> manifold <span class="searchmatch">Lorentz</span> metric <span class="searchmatch">Lorentz</span> symmetry <span class="searchmatch">Lorentz</span> transformation English Wikipedia has an article on: Hendrik <span class="searchmatch">Lorentz</span> Wikipedia...
Wiktionary:Entry layout § Translations. Translations to be checked <span class="searchmatch">invariant</span> (plural <span class="searchmatch">invariants</span>) An <span class="searchmatch">invariant</span> quantity, function etc. 2015, Ruslan Sharipov, “On positive...
problem as a relativistic system of baryons and mesons based on a local, <span class="searchmatch">Lorentz</span>-<span class="searchmatch">invariant</span> lagrangian density. hadrodynamics classical hadrodynamics...
The formation of quotients. 2015, Valerio Astuti, Laurent Freidel, “<span class="searchmatch">Lorentz</span> <span class="searchmatch">invariant</span> deformations of momentum space”, in arXiv[1]: We show that such deformations...
coordinate acceleration. The proper acceleration of an object is <span class="searchmatch">Lorentz</span> <span class="searchmatch">invariant</span>. Edwin F. Taylor & John Archibald Wheeler (1966 1st ed. only) Spacetime...
uncountable, plural invariances) The property of being <span class="searchmatch">invariant</span>. Galilean invariance <span class="searchmatch">Lorentz</span> invariance (physics) scale invariance time-invariance time...
_{\nu }={{\partial ^{2}} \over {\partial t^{2}}}-\nabla ^{2}=\square } , which is known as the d'Alembertian, is <span class="searchmatch">invariant</span> under <span class="searchmatch">Lorentz</span> transformations....
( a ) = 0 {\displaystyle k^{\mu }\epsilon _{\mu }^{(a)}=0} Since this is a <span class="searchmatch">Lorentz</span> <span class="searchmatch">invariant</span> equation, it holds for a moving spin 1 particle as well....