In order to understand the following parsing code, you need to understand how inflected text specs work. They are intended to work with inflected text where individual words to be inflected may be followed by inflection specs in angle brackets. The format of the text inside of the angle brackets is up to the individual language and part-of-speech specific implementation. A real-world example is as follows: ]<+> ]<*,*#.pr>
. This is the inflection of the Ukrainian multiword expression меди́чна сестра́ (medýčna sestrá, “nurse”, literally “medical sister”), consisting of two words: the adjective меди́чна (medýčna, “medical”, feminine singular) and the noun сестра́ (sestrá, “sister”). The specs in angle brackets follow each word to be inflected; for example, <+>
means that the preceding word should be declined as an adjective.
The code below works in terms of balanced expressions, which are bounded by delimiters such as < >
or . The intention is to allow separators such as spaces to be embedded inside of delimiters; such embedded separators will not be parsed as separators. For example, Ukrainian noun specs allow footnotes in brackets to be inserted inside of angle brackets; something like
меди́чна<+> сестра́<pr.>
is legal, as is ]<+> ]<pr.>
, and the parsing code should not be confused by the embedded brackets, spaces or angle brackets.
The parsing is done by two functions, which work in close concert: parse_balanced_segment_run()
and split_alternating_runs()
. To illustrate, consider the following:
parse_balanced_segment_run("foo<M.proper noun> bar<F>", "<", ">")
=
{"foo", "<M.proper noun>", " bar", "<F>", ""}
then
split_alternating_runs({"foo", "<M.proper noun>", " bar", "<F>", ""}, " ")
=
{{"foo", "<M.proper noun>", ""}, {"bar", "<F>", ""}}
Here, we start out with a typical inflected text spec foo<M.proper noun> bar<F>
, call parse_balanced_segment_run()
on it, and call split_alternating_runs()
on the result. The output of parse_balanced_segment_run()
is a list where even-numbered segments are bounded by the bracket-like characters passed into the function, and odd-numbered segments consist of the surrounding text. split_alternating_runs()
is called on this, and splits only the odd-numbered segments, grouping all segments between the specified character. Note that the inner lists output by split_alternating_runs()
are themselves in the same format as the output of parse_balanced_segment_run()
, with bracket-bounded text in the even-numbered segments. Hence, such lists can be passed again to split_alternating_runs()
.
function export.parse_balanced_segment_run(segment_run, open, close)
Parse a string containing matched instances of parens, brackets or the like. Return a list of strings, alternating between textual runs not containing the open/close characters and runs beginning and ending with the open/close characters. For example,
parse_balanced_segment_run("foo(x(1)), bar(2)", "(", ")") = {"foo", "(x(1))", ", bar", "(2)", ""}
function export.parse_balanced_segment_run(segment_run, open, close)
This function lacks documentation. Please add a description of its usages, inputs and outputs, or its difference from similar functions, or make it local to remove it from the function list.
function export.parse_multi_delimiter_balanced_segment_run(segment_run, delimiter_pairs, no_error_on_unmatched)
Like parse_balanced_segment_run() but accepts multiple sets of delimiters. For example,
parse_multi_delimiter_balanced_segment_run("foo)], quux<glorp>", {{""}, {"(", ")"}, {"<", ">"}}) =
{"foo", ")]", ", quux", "<glorp>", ""}
Each element in the list of delimiter pairs is a string specifying an equivalence class of possible delimiter characters. You can use this, for example, to allow either "" or "]". To do this, first replace "[" and "]" with single Unicode characters such as U+FFF0 and U+FFF1, and then specify a two-character string containing "" and U+FFF1 as the corresponding closing delimiter.
If no_error_on_unmatched
is given and an error is found during parsing, a string is returned containing the error message instead of throwing an error.
function export.term_contains_top_level_html(term, html_pattern)
Check whether a term contains top-level HTML. We want to distinguish inline modifiers from HTML. We assume an inline modifier is either a boolean modifier like <bor>
or a prefix modifier like <tr:Miryem>
. All other things inside of angle brackets, e.g. <span class="foo">
, </span>
, <br/>
, etc., should be flagged as HTML (typically caused by wrapping an argument in {{m|...}}
, {{af|...}}
or similar, but sometimes specified directly, e.g. <sup>6</sup>
). By default, we assume the tag in an inline modifier contains either letters, numbers, hyphens or underscore (but not spaces), and must either stand alone or be followed by a colon, leading to a default HTML-checking pattern of "<*"
. But this can be modified; e.g. Module:tl-pronunciation allows modifiers of the form <pos^defn>
or <pos,pos,pos^defn>
, and would need to use its own HTML pattern. It's important we restrict the check for HTML to top-level to allow for generated HTML inside of e.g. qualifier tags, such as foo<q:similar to {{m|fr|bar}}>
.
function export.split_alternating_runs(segment_runs, splitchar, preserve_splitchar)
Split a list of alternating textual runs of the format returned by parse_balanced_segment_run
on splitchar
. This only splits the odd-numbered textual runs (the portions between the balanced open/close characters). The return value is a list of lists, where each list contains an odd number of elements, where the even-numbered elements of the sublists are the original balanced textual run portions. For example, if we do
parse_balanced_segment_run("foo<M.proper noun> bar<F>", "<", ">") =
{"foo", "<M.proper noun>", " bar", "<F>", ""}
then
split_alternating_runs({"foo", "<M.proper noun>", " bar", "<F>", ""}, " ") =
{{"foo", "<M.proper noun>", ""}, {"bar", "<F>", ""}}
Note that we did not touch the text "<M.proper noun>" even though it contains a space in it, because it is an even-numbered element of the input list. This is intentional and allows for embedded separators inside of brackets/parens/etc. Note also that the inner lists in the return value are of the same form as the input list (i.e. they consist of alternating textual runs where the even-numbered segments are balanced runs), and can in turn be passed to split_alternating_runs().
If preserve_splitchar
is passed in, the split character is included in the output, as follows:
split_alternating_runs({"foo", "<M.proper noun>", " bar", "<F>", ""}, " ", true) =
{{"foo", "<M.proper noun>", ""}, {" "}, {"bar", "<F>", ""}}
Consider what happens if the original string has multiple spaces between brackets, and multiple sets of brackets without spaces between them.
parse_balanced_segment_run("foo baz-bat quux xyzzy", "") =
{"foo", "", "", "", " baz-bat quux xyzzy", "", ""}
then
split_alternating_runs({"foo", "", "", "", " baz-bat quux xyzzy", "", ""}, "") =
{{"foo", "", "", "", ""}, {"baz"}, {"bat"}, {"quux"}, {"xyzzy", "", ""}}
If preserve_splitchar
is passed in, the split character is included in the output, as follows:
split_alternating_runs({"foo", "", "", "", " baz bat quux xyzzy", "", ""}, "", true) =
{{"foo", "", "", "", ""}, {" "}, {"baz"}, {"-"}, {"bat"}, {" "}, {"quux"}, {" "}, {"xyzzy", "", ""}}
As can be seen, the even-numbered elements in the outer list are one-element lists consisting of the separator text.
function export.rejoin_delimited_runs(data)
After calling parse_multi_delimiter_balanced_segment_run()
, rejoin delimiter-bounded textual runs (i.e. textual runs surrounded by certain matched delimiters) with the runs on either side. This can be used when some of the matched delimiters are specified only in order to ensure that delimiters inside of other delimiters aren't parsed. As an example, Module:object usage calls m_parse_utilities.parse_multi_delimiter_balanced_segment_run(object, {{""}, {"(", ")"}, {"<", ">"}})
but the actual syntax of {{+obj}}
only uses parens and angle brackets as delimiters. Square brackets are included so that internal links are treated as units (i.e. parens and angle brackets occurring inside of them aren't parsed), but beyond that we don't treat square brackets as delimiters, so we want to rejoin square-bracket-delimited textual runs with adjacent runs before further parsing.
data
is an object of properties. Currently there are two: runs
(the output of calling parse_multi_delimiter_balanced_segment_run()
, i.e. a list of textual runs, where even-numbered elements begin and end with a matched delimiter and odd-numbered elements are surrounding text) and delimiter_pattern
(a Lua pattern matching delimited textual runs that we want to rejoin with the surrounding text). delimiter_pattern
should normally be anchored at the beginning; e.g. "^%["
would be the correct pattern to use when rejoining square-bracket-delimited textual runs, as described above.
function export.strip_spaces(text)
This function lacks documentation. Please add a description of its usages, inputs and outputs, or its difference from similar functions, or make it local to remove it from the function list.
function export.frob_raw_text_alternating_runs(split_run_set, frob, preserve_splitchar)
Apply an arbitrary function frob
to the "raw-text" segments in a split run set (the output of split_alternating_runs()). We leave alone stuff within balanced delimiters (footnotes, inflection specs and the like), as well as splitchars themselves if present. preserve_splitchar
indicates whether splitchars are present in the split run set. frob
is a function of one argument (the string to frob) and should return one argument (the frobbed string). We operate by only frobbing odd-numbered segments, and only in odd-numbered runs if preserve_splitchar is given.
function export.split_alternating_runs_and_frob_raw_text(run, splitchar, frob, preserve_splitchar)
Like split_alternating_runs() but applies an arbitrary function frob
to "raw-text" segments in the result (i.e. not stuff within balanced delimiters such as footnotes and inflection specs, and not splitchars if present). frob
is a function of one argument (the string to frob) and should return one argument (the frobbed string).
function export.split_alternating_runs_and_strip_spaces(segment_runs, splitchar, preserve_splitchar)
FIXME: Older entry point. Call split_alternating_runs_and_frob_raw_text()
in Module:parse utilities directly. Like split_alternating_runs()
but strips spaces from both ends of the odd-numbered elements (only in odd-numbered runs if preserve_splitchar
is given). Effectively we leave alone the footnotes and splitchars themselves, but otherwise strip extraneous spaces. Spaces in the middle of an element are also left alone.
function export.split_alternating_runs_escaping(run, splitchar, preserve_splitchar, escape_fun, unescape_fun)
Split the non-modifier parts of an alternating run (after parse_balanced_segment_run() is called) on a Lua pattern, but not on certain sequences involving characters in that pattern (e.g. comma+whitespace). splitchar
is the pattern to split on; preserve_splitchar
indicates whether to preserve the delimiter and is the same as in split_alternating_runs(). escape_fun
is called beforehand on each run of raw text and should return two values: the escaped run and whether unescaping is needed. If any call to escape_fun
indicates that unescaping is needed, unescape_fun
will be called on each run of raw text after splitting on splitchar
. The return value of this function is as in split_alternating_runs().
function export.escape_comma_whitespace(run, tempcomma)
Replace comma with a temporary char in comma + whitespace.
function export.unescape_comma_whitespace(run, tempcomma)
Undo the replacement of comma with a temporary char.
function export.split_alternating_runs_on_comma(run, tempcomma)
Split the non-modifier parts of an alternating run (after parse_balanced_segment_run() is called) on comma, but not on comma+whitespace. See split_on_comma()
above for more information and the meaning of tempcomma
.
function export.split_escaping(text, splitchar, preserve_splitchar, escape_fun, unescape_fun)
Split text on a Lua pattern, but not on certain sequences involving characters in that pattern (e.g. comma+whitespace). splitchar
is the pattern to split on; preserve_splitchar
indicates whether to preserve the delimiter between split segments. escape_fun
is called beforehand on the text and should return two values: the escaped run and whether unescaping is needed. If the call to escape_fun
indicates that unescaping is needed, unescape_fun
will be called on each run of text after splitting on splitchar
. The return value of this a list of runs, interspersed with delimiters if preserve_splitchar
is specified.
function export.split_on_comma(text, tempcomma)
Split text on comma, but not on comma+whitespace. This is similar to mw.text.split(text, ",")
but will not split on commas directly followed by whitespace, to handle embedded commas in terms (which are almost always followed by a space). tempcomma
is the Unicode character to temporarily use when doing the splitting; normally U+FFF0, but you can specify a different character if you use U+FFF0 for some internal purpose.
function export.escape_wikicode(term)
Ensure that Wikicode (template calls, bracketed links, HTML, bold/italics, etc.) displays literally in error messages by inserting a Unicode word-joiner symbol after all characters that may trigger Wikicode interpretation. Replacing with equivalent HTML escapes doesn't work because they are displayed literally. I could not get this to work using ... (those tags display literally), using using ... (same thing) or using mw.getCurrentFrame():extensionTag("nowiki", ...) (everything gets converted to a strip marker UNIQ--nowiki-00000000-QINU
or similar). FIXME: This is a massive hack; there must be a better way.
function export.make_parse_err(arg_gloss)
This function lacks documentation. Please add a description of its usages, inputs and outputs, or its difference from similar functions, or make it local to remove it from the function list.
function export.parse_term_with_lang(data_or_term, parse_err_or_paramname)
Parse a term that may have a language code (or possibly multiple comma-separated language codes, if allow_multiple
is given) preceding it (e.g. la:minūtia
or grc:]
or nan-hbl,hak:]]
). Return four arguments:
allow_family
is given), or a list of such objects if allow_multiple
is given;]
(it may be generated into that form with Wikipedia and Wikisource prefixes) or of the form {]
, otherwise the full term;]
, otherwise nil. Etymology-only languages are allowed. This function also correctly handles Wikipedia prefixes (e.g. w:Abatemarco
or w:it:Colle Val d'Elsa
or lw:ru:Филарет
) and Wikisource prefixes (e.g. s:Twelve O'Clock
or s:]
or s:fr:Perceval ou le conte du Graal
or s:ro:]
or ls:ko:이상적 부인
or ls:ko:]
) and converts them into two-part links, with the display form not including the Wikipedia or Wikisource prefix unless it was explicitly specified using a two-part link as in lw:ru:]
or ls:ko:]
. The difference between w:
("Wikipedia") and lw:
("Wikipedia link") is that the latter requires a language code and returns the corresponding language object; same for the difference between s:
("Wikisource") and ls:
("Wikisource link").NOTE
: Embedded links are not correctly handled currently. If an embedded link is detected, the whole term is returned as the link part (third argument), and the display part is nil. If you construct your own link from the link and display parts, you must check for this.
parse_err_or_paramname
is an optional function of one or two arguments to display an error, or a string naming a parameter to display in the error message. If omitted, a function is generated based off of term
. (The second argument to the function is the number of stack frames to ignore when calling error(); if you declare your error function with only one argument, things will still work fine.)
function export.parse_inline_modifiers(arg, props)
Parse a term that may have inline modifiers attached (e.g. rifiuti<q:plural-only>
or rinfusa<t:bulk cargo><lit:resupplying><qq:more common in the plural {{m|it|rinfuse}}>
).
arg
is the term to parse.props
is an object holding further properties controlling how to parse the term (only param_mods
and generate_obj
are required):
paramname
is the name of the parameter where arg
comes from, or nil if this isn't available (it is used only in error messages).param_mods
is a table describing the allowed inline modifiers (see below).generate_obj
is a function of one or two arguments that should parse the argument minus the inline modifiers and return a corresponding parsed object (into which the inline modifiers will be rewritten). If declared with one argument, that will be the raw value to parse; if declared with two arguments, the second argument will be the parse_err
function (see below).parse_err
is an optional function of one argument (an error message) and should display the error message, along with any desired contextual text (e.g. the argument name and value that triggered the error). If omitted, a default function will be generated which displays the error along with the original value of arg
(passed through escape_wikicode()
above to ensure that Wikicode (such as links) is displayed literally).splitchar
is a Lua pattern. If specified, arg
can consist of multiple delimiter-separated terms, each of which may be followed by inline modifiers, and the return value will be a list of parsed objects instead of a single object. Note that splitting on delimiters will not happen in certain protected sequences (by default comma+whitespace; see below). The algorithm to split on delimiters is sensitive to inline modifier syntax and will not be confused by delimiters inside of inline modifiers, which do not trigger splitting (whether or not contained within protected sequences).outer_container
, if specified, is used when multiple delimiter-separated terms are possible, and is the object into which the list of per-term objects is stored (into the terms
field) and into which any modifiers that are given the overall
property (see below) will be stored. If given, this value will be returned as the value of parse_inline_modifiers()
. If outer_container
is not given, parse_inline_modifiers()
will return the list of per-term objects directly, and no modifier may have an overall
property.preserve_splitchar
, if specified, causes the actual delimiter matched by splitchar
to be returned in the parsed object describing the element that comes after the delimiter. The delimiter is stored in a key whose name is controlled by separator_key
, which defaults to "separator".separator_key
controls the key into which the actual delimiter is written when preserve_splitchar
is used. See above.escape_fun
and unescape_fun
are as in split_escaping() and split_alternating_runs_escaping() above and control the protected sequences that won't be split. By default, escape_comma_whitespace
and unescape_comma_whitespace
are used, so that comma+whitespace sequences won't be split.pre_normalize_modifiers
, if specified, is a function of one argument, which can be used to "normalize" modifiers prior to further parsing. This is used, for example, in Module:tl-pronunciation to convert modifiers of the form <noun^expectation; hope>
to <t:noun^expectation; hope>
, so they can be processed as standard modifiers. It is also used in Module:ar-verb to convert footnotes of the form
to <footnote:>
, to allow for mixing bracketed footnotes and inline modifiers when overriding verbal nouns and such. It could similarly be used to handle boolean modifiers like <slb>
in {{desc}}
and convert them to a standard form <slb:1>
. It runs just before parsing out the modifier prefix and value, and is passed an object containing fields modtext
(the un-normalized modifier text, including surrounding angle brackets, or in some cases, text surrounded by other delimiters such as square brackets, if parse_inline_modifiers_from_segments()
is being called and the caller did their own parsing of balanced segment runs) and parse_err
(the passed-in or autogenerated function to signal an error during parsing; a function of one argument, a message, which throws an error displaying that message). It should return a single value, the normalized value of modtext
, including surrounding angle brackets.param_mods
is a table describing allowed modifiers. The keys of the table are modifier prefixes and the values are tables describing how to parse and store the associated modifier values. Here is a typical example, for an item that takes the standard modifiers associated with full_link()
in Module:links, as well as left and right qualifiers and labels:
local param_mods = {
alt = {},
t = {
-- ] expects the gloss in "gloss".
item_dest = "gloss",
},
gloss = {},
tr = {},
ts = {},
g = {
-- ] expects the genders in "g". <code>sublist = true</code> automatically splits on comma (optionally
-- with surrounding whitespace).
item_dest = "genders",
sublist = true,
},
pos = {},
lit = {},
id = {},
sc = {
-- Automatically parse as a script code and convert to a script object.
type = "script",
},
-- Qualifiers and labels
q = {
type = "qualifier",
},
qq = {
type = "qualifier",
},
l = {
type = "labels",
},
ll = {
type = "labels",
},
}
In the table values:
item_dest
specifies the destination key to store the object into (if not the same as the modifier key itself).type
, set
, sublist
and convert
have the same meaning as in Module:parameters and are used for converting the object from the string form given by the user into the form needed for further processing. Note that type
makes use of additional properties that may be specified. Specifically, if type = "language"
, the properties family
and method
are also examined, and if type = "family"
or type = "script"
, the property method
is examined.store
describes how to store the converted modifier value into the parsed object. If omitted, the converted value is simply written into the parsed object under the appropriate key; but an error is generated if the key already has a value. (This means that multiple occurrences of a given modifier are allowed if store
is given, but not otherwise.) store
can be one of the following:
"insert"
: the converted value is appended to the key's value using table.insert()
; if the key has no value, it is first converted to an empty list;"insertIfNot"
: is similar but appends the value using insertIfNot()
in Module:table;"insert-flattened"
, the converted value is assumed to be a list and the objects are appended one-by-one into the key's existing value using table.insert()
;"insertIfNot-flattened"
is similar but appends using insertIfNot()
in Module:table; (WARNING: When using "insert-flattened"
and "insertIfNot-flattened"
, if there is no existing value for the key, the converted value is just stored directly. This means that future appends will side-effect that value, so make sure that the return value of the conversion function for this key generates a fresh list each time.)dest
: the object to write the value into;key
: the field where the value should be written;converted
: the (converted) value to write;raw_val
: the raw, user-specified value (a string);parse_err
: a function of one argument (an error string), which signals an error, and includes extra context in the message about the modifier in question, the angle-bracket spec that includes the modifier in it, the overall value, and (if paramname
was given) the parameter holding the overall value.overall
only applies if splitchar
is given. In this case, the modifier applies to the entire argument rather than to an individual term in the argument, and must occur after the last item separated by splitchar
, instead of being allowed to occur after any of them. The modifier will be stored into the outer container object, which must exist (i.e. outer_container
must have been given).The return value of parse_inline_modifiers()
depends on whether splitchar
and outer_container
have been given. If neither is given, the return value is the object returned by generate_obj
. If splitchar
but not outer_container
is given, the return value is a list of per-term objects, each of which is generated by generate_obj
. If both splitchar
and outer_container
are given, the return value is the value of outer_container
and the per-term objects are stored into the terms
field of this object.
function export.parse_inline_modifiers_from_segments(data)
Parse a single term that may have inline modifiers attached. This is a helper function of parse_inline_modifiers()
but is exported separately in case the caller needs to make their own call to parse_balanced_segment_run()
(as in Module:quote, which splits on several matched delimiters simultaneously). It takes only a single argument, data
, which is an object with the following fields:
group
: A list of segments as output by parse_balanced_segment_run()
(see the overall comment at the top of Module:parse utilities), or one of the lists returned by calling split_alternating_runs()
.separated_groups
: The list of groups (each of which is of the form of group
) describing all the terms in the argument parsed by parse_inline_modifiers()
, or nil
if this isn't applicable (i.e. multiple terms aren't allowed in the argument).group_index
: The index into separated_groups
where group
can be found, or nil
if not applicable (see below).arg
: The original user-specified argument being parsed; used only for error messages and only when props.parse_err
is not specified.props
: The props
argument to parse_inline_modifiers()
.The return value is the object created by generate_obj
, with properties filled in describing the modifiers of the term in question. Note that props.outer_container
and the overall
setting of the props.param_mods
structure are respected, but props.splitchar
is ignored because the splitting happens in the caller. Specifically, if there are any modifiers with the overall
setting, props.separated_groups
and props.group_index
must be given so that the function is able to determine if the modifier is indeed attached to the last term, and props.outer_container
must be given because that is where such modifiers are stored. Otherwise, none of these settings need be given.
local export = {}
local m_string_utilities = require("Module:string utilities")
local parameters_module = "Module:parameters"
local list_to_text = mw.text.listToText
local rfind = mw.ustring.find
local rsplit = mw.text.split
local u = mw.ustring.char
local rsubn = mw.ustring.gsub
-- version of rsubn() that discards all but the first return value
local function rsub(term, foo, bar)
local retval = rsubn(term, foo, bar)
return retval
end
--[==[ intro:
In order to understand the following parsing code, you need to understand how inflected text specs work. They are
intended to work with inflected text where individual words to be inflected may be followed by inflection specs in
angle brackets. The format of the text inside of the angle brackets is up to the individual language and part-of-speech
specific implementation. A real-world example is as follows: `<nowiki>]<+> ]<*,*#.pr></nowiki>`.
This is the inflection of the Ukrainian multiword expression {{m|uk|меди́чна сестра́||nurse|lit=medical sister}},
consisting of two words: the adjective {{m|uk|меди́чна||medical|pos=feminine singular}} and the noun {{m|uk|сестра́||sister}}.
The specs in angle brackets follow each word to be inflected; for example, `<+>` means that the preceding word should be
declined as an adjective.
The code below works in terms of balanced expressions, which are bounded by delimiters such as `< >` or ``. The
intention is to allow separators such as spaces to be embedded inside of delimiters; such embedded separators will not
be parsed as separators. For example, Ukrainian noun specs allow footnotes in brackets to be inserted inside of angle
brackets; something like `меди́чна<+> сестра́<pr.>` is legal, as is
`<nowiki>]<+> ]<pr.></nowiki>`, and the parsing code
should not be confused by the embedded brackets, spaces or angle brackets.
The parsing is done by two functions, which work in close concert: {parse_balanced_segment_run()} and
{split_alternating_runs()}. To illustrate, consider the following:
{parse_balanced_segment_run("foo<M.proper noun> bar<F>", "<", ">")} =<br />
{ {"foo", "<M.proper noun>", " bar", "<F>", ""}}
then
{split_alternating_runs({"foo", "<M.proper noun>", " bar", "<F>", ""}, " ")} =<br />
{ {{"foo", "<M.proper noun>", ""}, {"bar", "<F>", ""}}}
Here, we start out with a typical inflected text spec `foo<M.proper noun> bar<F>`, call {parse_balanced_segment_run()} on
it, and call {split_alternating_runs()} on the result. The output of {parse_balanced_segment_run()} is a list where
even-numbered segments are bounded by the bracket-like characters passed into the function, and odd-numbered segments
consist of the surrounding text. {split_alternating_runs()} is called on this, and splits '''only''' the odd-numbered
segments, grouping all segments between the specified character. Note that the inner lists output by
{split_alternating_runs()} are themselves in the same format as the output of {parse_balanced_segment_run()}, with
bracket-bounded text in the even-numbered segments. Hence, such lists can be passed again to {split_alternating_runs()}.
]==]
--[==[
Parse a string containing matched instances of parens, brackets or the like. Return a list of strings, alternating
between textual runs not containing the open/close characters and runs beginning and ending with the open/close
characters. For example,
{parse_balanced_segment_run("foo(x(1)), bar(2)", "(", ")") = {"foo", "(x(1))", ", bar", "(2)", ""}}
]==]
function export.parse_balanced_segment_run(segment_run, open, close)
return m_string_utilities.split(segment_run, "(%b" .. open .. close .. ")")
end
-- The following is an equivalent, older implementation that does not use %b (written before I was aware of %b).
--[=[
function export.parse_balanced_segment_run(segment_run, open, close)
local break_on_open_close = m_string_utilities.split(segment_run, "()")
local text_and_specs = {}
local level = 0
local seg_group = {}
for i, seg in ipairs(break_on_open_close) do
if i % 2 == 0 then
if seg == open then
table.insert(seg_group, seg)
level = level + 1
else
assert(seg == close)
table.insert(seg_group, seg)
level = level - 1
if level < 0 then
error("Unmatched " .. close .. " sign: '" .. segment_run .. "'")
elseif level == 0 then
table.insert(text_and_specs, table.concat(seg_group))
seg_group = {}
end
end
elseif level > 0 then
table.insert(seg_group, seg)
else
table.insert(text_and_specs, seg)
end
end
if level > 0 then
error("Unmatched " .. open .. " sign: '" .. segment_run .. "'")
end
return text_and_specs
end
]=]
--[==[
Like parse_balanced_segment_run() but accepts multiple sets of delimiters. For example,
{parse_multi_delimiter_balanced_segment_run("foo)], quux<glorp>", {{""}, {"(", ")"}, {"<", ">"}}) =
{"foo", ")]", ", quux", "<glorp>", ""}}.
Each element in the list of delimiter pairs is a string specifying an equivalence class of possible delimiter
characters. You can use this, for example, to allow either "[" or "&#91;" to be treated equivalently, with either
one closed by either "]" or "&#93;". To do this, first replace "&#91;" and "&#93;" with single Unicode
characters such as U+FFF0 and U+FFF1, and then specify a two-character string containing "[" and U+FFF0 as the opening
delimiter, and a two-character string containing "]" and U+FFF1 as the corresponding closing delimiter.
If `no_error_on_unmatched` is given and an error is found during parsing, a string is returned containing the error
message instead of throwing an error.
]==]
function export.parse_multi_delimiter_balanced_segment_run(segment_run, delimiter_pairs, no_error_on_unmatched)
local escaped_delimiter_pairs = {}
local open_to_close_map = {}
local open_close_items = {}
local open_items = {}
for _, open_close in ipairs(delimiter_pairs) do
local open, close = unpack(open_close)
open = rsub(open, "(%%%%-])", "%%%1")
close = rsub(close, "(%%%%-])", "%%%1")
table.insert(open_close_items, open)
table.insert(open_close_items, close)
table.insert(open_items, open)
open = ""
close = ""
open_to_close_map = close
table.insert(escaped_delimiter_pairs, {open, close})
end
local open_close_pattern = "()"
local open_pattern = "()"
local break_on_open_close = m_string_utilities.split(segment_run, open_close_pattern)
local text_and_specs = {}
local level = 0
local seg_group = {}
local open_at_level_zero
for i, seg in ipairs(break_on_open_close) do
if i % 2 == 0 then
table.insert(seg_group, seg)
if level == 0 then
if not rfind(seg, open_pattern) then
local errmsg = "Unmatched close sign " .. seg .. ": '" .. segment_run .. "'"
if no_error_on_unmatched then
return errmsg
else
error(errmsg)
end
end
assert(open_at_level_zero == nil)
for _, open_close in ipairs(escaped_delimiter_pairs) do
local open, close = unpack(open_close)
if rfind(seg, open) then
open_at_level_zero = open
break
end
end
if open_at_level_zero == nil then
error(("Internal error: Segment %s didn't match any open regex"):format(seg))
end
level = level + 1
elseif rfind(seg, open_at_level_zero) then
level = level + 1
elseif rfind(seg, open_to_close_map) then
level = level - 1
assert(level >= 0)
if level == 0 then
table.insert(text_and_specs, table.concat(seg_group))
seg_group = {}
open_at_level_zero = nil
end
end
elseif level > 0 then
table.insert(seg_group, seg)
else
table.insert(text_and_specs, seg)
end
end
if level > 0 then
local errmsg = "Unmatched open sign " .. open_at_level_zero .. ": '" .. segment_run .. "'"
if no_error_on_unmatched then
return errmsg
else
error(errmsg)
end
end
return text_and_specs
end
--[==[
Check whether a term contains top-level HTML. We want to distinguish inline modifiers from HTML. We assume an inline
modifier is either a boolean modifier like `<bor>` or a prefix modifier like `<tr:Miryem>`. All other things inside of
angle brackets, e.g. `<nowiki><span class="foo"></nowiki>`, `<nowiki></span></nowiki>`, `<nowiki><br/></nowiki>`, etc.,
should be flagged as HTML (typically caused by wrapping an argument in {{tl|m|...}}, {{tl|af|...}} or similar, but
sometimes specified directly, e.g. `<nowiki><sup>6</sup></nowiki>`). By default, we assume the tag in an inline modifier
contains either letters, numbers, hyphens or underscore (but not spaces), and must either stand alone or be followed by
a colon, leading to a default HTML-checking pattern of {"<*"}. But this can be modified; e.g.
] allows modifiers of the form `<<var>pos</var>^<var>defn</var>>` or
`<<var>pos</var>,<var>pos</var>,<var>pos</var>^<var>defn</var>>`, and would need to use its own HTML pattern. It's
important we restrict the check for HTML to top-level to allow for generated HTML inside of e.g. qualifier tags, such as
`<nowiki>foo<q:similar to {{m|fr|bar}}></nowiki>`.
]==]
function export.term_contains_top_level_html(term, html_pattern)
html_pattern = html_pattern or "<*"
-- If no HTML anywhere, the answer is no.
if not term:find(html_pattern) then
return false
end
-- Otherwise, we have to call parse_balanced_segment_run() and check alternate runs at top level.
local runs = export.parse_balanced_segment_run(term, "<", ">")
for i = 2, #runs, 2 do
if runs:find("^" .. html_pattern) then
return true
end
end
return false
end
--[==[
Split a list of alternating textual runs of the format returned by `parse_balanced_segment_run` on `splitchar`. This
only splits the odd-numbered textual runs (the portions between the balanced open/close characters). The return value
is a list of lists, where each list contains an odd number of elements, where the even-numbered elements of the sublists
are the original balanced textual run portions. For example, if we do
{parse_balanced_segment_run("foo<M.proper noun> bar<F>", "<", ">") =
{"foo", "<M.proper noun>", " bar", "<F>", ""}}
then
{split_alternating_runs({"foo", "<M.proper noun>", " bar", "<F>", ""}, " ") =
{{"foo", "<M.proper noun>", ""}, {"bar", "<F>", ""}}}
Note that we did not touch the text "<M.proper noun>" even though it contains a space in it, because it is an
even-numbered element of the input list. This is intentional and allows for embedded separators inside of
brackets/parens/etc. Note also that the inner lists in the return value are of the same form as the input list (i.e.
they consist of alternating textual runs where the even-numbered segments are balanced runs), and can in turn be passed
to split_alternating_runs().
If `preserve_splitchar` is passed in, the split character is included in the output, as follows:
{split_alternating_runs({"foo", "<M.proper noun>", " bar", "<F>", ""}, " ", true) =
{{"foo", "<M.proper noun>", ""}, {" "}, {"bar", "<F>", ""}}}
Consider what happens if the original string has multiple spaces between brackets, and multiple sets of brackets
without spaces between them.
{parse_balanced_segment_run("foo baz-bat quux xyzzy", "") =
{"foo", "", "", "", " baz-bat quux xyzzy", "", ""}}
then
{split_alternating_runs({"foo", "", "", "", " baz-bat quux xyzzy", "", ""}, "") =
{{"foo", "", "", "", ""}, {"baz"}, {"bat"}, {"quux"}, {"xyzzy", "", ""}}}
If `preserve_splitchar` is passed in, the split character is included in the output,
as follows:
{split_alternating_runs({"foo", "", "", "", " baz bat quux xyzzy", "", ""}, "", true) =
{{"foo", "", "", "", ""}, {" "}, {"baz"}, {"-"}, {"bat"}, {" "}, {"quux"}, {" "}, {"xyzzy", "", ""}}}
As can be seen, the even-numbered elements in the outer list are one-element lists consisting of the separator text.
]==]
function export.split_alternating_runs(segment_runs, splitchar, preserve_splitchar)
local grouped_runs = {}
local run = {}
for i, seg in ipairs(segment_runs) do
if i % 2 == 0 then
table.insert(run, seg)
else
local parts =
preserve_splitchar and m_string_utilities.split(seg, "(" .. splitchar .. ")") or
rsplit(seg, splitchar)
table.insert(run, parts)
for j=2,#parts do
table.insert(grouped_runs, run)
run = {parts}
end
end
end
if #run > 0 then
table.insert(grouped_runs, run)
end
return grouped_runs
end
--[==[
After calling `parse_multi_delimiter_balanced_segment_run()`, rejoin delimiter-bounded textual runs (i.e. textual runs
surrounded by certain matched delimiters) with the runs on either side. This can be used when some of the matched
delimiters are specified only in order to ensure that delimiters inside of other delimiters aren't parsed. As an
example, ] calls
{m_parse_utilities.parse_multi_delimiter_balanced_segment_run(object, {{""}, {"(", ")"}, {"<", ">"}})} but the
actual syntax of {{tl|+obj}} only uses parens and angle brackets as delimiters. Square brackets are included so that
internal links are treated as units (i.e. parens and angle brackets occurring inside of them aren't parsed), but beyond
that we don't treat square brackets as delimiters, so we want to rejoin square-bracket-delimited textual runs with
adjacent runs before further parsing.
`data` is an object of properties. Currently there are two: `runs` (the output of calling
`parse_multi_delimiter_balanced_segment_run()`, i.e. a list of textual runs, where even-numbered elements begin and end
with a matched delimiter and odd-numbered elements are surrounding text) and `delimiter_pattern` (a Lua pattern matching
delimited textual runs that we want to rejoin with the surrounding text). `delimiter_pattern` should normally be
anchored at the beginning; e.g. {"^%["} would be the correct pattern to use when rejoining square-bracket-delimited
textual runs, as described above.
]==]
function export.rejoin_delimited_runs(data)
local joined_runs = {}
local i = 1
while i <= #data.runs do
local run = data.runs
if i % 2 == 0 and run:find(data.delimiter_pattern) then
joined_runs = joined_runs .. run .. data.runs
i = i + 2
else
table.insert(joined_runs, run)
i = i + 1
end
end
return joined_runs
end
function export.strip_spaces(text)
return rsub(text, "^%s*(.-)%s*$", "%1")
end
--[==[
Apply an arbitrary function `frob` to the "raw-text" segments in a split run set (the output of
split_alternating_runs()). We leave alone stuff within balanced delimiters (footnotes, inflection specs and the
like), as well as splitchars themselves if present. `preserve_splitchar` indicates whether splitchars are present
in the split run set. `frob` is a function of one argument (the string to frob) and should return one argument (the
frobbed string). We operate by only frobbing odd-numbered segments, and only in odd-numbered runs if
preserve_splitchar is given.
]==]
function export.frob_raw_text_alternating_runs(split_run_set, frob, preserve_splitchar)
for i, run in ipairs(split_run_set) do
if not preserve_splitchar or i % 2 == 1 then
for j, segment in ipairs(run) do
if j % 2 == 1 then
run = frob(segment)
end
end
end
end
end
--[==[
Like split_alternating_runs() but applies an arbitrary function `frob` to "raw-text" segments in the result (i.e.
not stuff within balanced delimiters such as footnotes and inflection specs, and not splitchars if present). `frob`
is a function of one argument (the string to frob) and should return one argument (the frobbed string).
]==]
function export.split_alternating_runs_and_frob_raw_text(run, splitchar, frob, preserve_splitchar)
local split_runs = export.split_alternating_runs(run, splitchar, preserve_splitchar)
export.frob_raw_text_alternating_runs(split_runs, frob, preserve_splitchar)
return split_runs
end
--[==[
FIXME: Older entry point. Call `split_alternating_runs_and_frob_raw_text()` in ] directly.
Like `split_alternating_runs()` but strips spaces from both ends of the odd-numbered elements (only in odd-numbered runs
if `preserve_splitchar` is given). Effectively we leave alone the footnotes and splitchars themselves, but otherwise
strip extraneous spaces. Spaces in the middle of an element are also left alone.
]==]
function export.split_alternating_runs_and_strip_spaces(segment_runs, splitchar, preserve_splitchar)
return export.split_alternating_runs_and_frob_raw_text(segment_runs, splitchar, export.strip_spaces, preserve_splitchar)
end
--[==[
Split the non-modifier parts of an alternating run (after parse_balanced_segment_run() is called) on a Lua pattern,
but not on certain sequences involving characters in that pattern (e.g. comma+whitespace). `splitchar` is the pattern
to split on; `preserve_splitchar` indicates whether to preserve the delimiter and is the same as in
split_alternating_runs(). `escape_fun` is called beforehand on each run of raw text and should return two values:
the escaped run and whether unescaping is needed. If any call to `escape_fun` indicates that unescaping is needed,
`unescape_fun` will be called on each run of raw text after splitting on `splitchar`. The return value of this
function is as in split_alternating_runs().
]==]
function export.split_alternating_runs_escaping(run, splitchar, preserve_splitchar, escape_fun, unescape_fun)
-- First replace comma with a temporary character in comma+whitespace sequences.
local need_unescape = false
for i, seg in ipairs(run) do
if i % 2 == 1 then
local this_need_unescape
run, this_need_unescape = escape_fun(run)
need_unescape = need_unescape or this_need_unescape
end
end
if need_unescape then
return export.split_alternating_runs_and_frob_raw_text(run, splitchar, unescape_fun, preserve_splitchar)
else
return export.split_alternating_runs(run, splitchar, preserve_splitchar)
end
end
--[==[
Replace comma with a temporary char in comma + whitespace.
]==]
function export.escape_comma_whitespace(run, tempcomma)
tempcomma = tempcomma or u(0xFFF0)
local escaped = false
if run:find("\\,") then
run = run:gsub("\\,", "\\" .. tempcomma) -- assign to temp to discard second return value
escaped = true
end
if run:find(",%s") then
run = run:gsub(",(%s)", tempcomma .. "%1") -- assign to temp to discard second return value
escaped = true
end
return run, escaped
end
--[==[
Undo the replacement of comma with a temporary char.
]==]
function export.unescape_comma_whitespace(run, tempcomma)
tempcomma = tempcomma or u(0xFFF0)
run = run:gsub(tempcomma, ",") -- assign to temp to discard second return value
return run
end
--[==[
Split the non-modifier parts of an alternating run (after parse_balanced_segment_run() is called) on comma, but not
on comma+whitespace. See `split_on_comma()` above for more information and the meaning of `tempcomma`.
]==]
function export.split_alternating_runs_on_comma(run, tempcomma)
tempcomma = tempcomma or u(0xFFF0)
-- Replace comma with a temporary char in comma + whitespace.
local function escape_comma_whitespace(seg)
return export.escape_comma_whitespace(seg, tempcomma)
end
-- Undo replacement of comma with a temporary char in comma + whitespace.
local function unescape_comma_whitespace(seg)
return export.unescape_comma_whitespace(seg, tempcomma)
end
return export.split_alternating_runs_escaping(run, ",", false, escape_comma_whitespace, unescape_comma_whitespace)
end
--[==[
Split text on a Lua pattern, but not on certain sequences involving characters in that pattern (e.g.
comma+whitespace). `splitchar` is the pattern to split on; `preserve_splitchar` indicates whether to preserve the
delimiter between split segments. `escape_fun` is called beforehand on the text and should return two values: the
escaped run and whether unescaping is needed. If the call to `escape_fun` indicates that unescaping is needed,
`unescape_fun` will be called on each run of text after splitting on `splitchar`. The return value of this a list
of runs, interspersed with delimiters if `preserve_splitchar` is specified.
]==]
function export.split_escaping(text, splitchar, preserve_splitchar, escape_fun, unescape_fun)
if not rfind(text, splitchar) then
return {text}
end
-- If there are square or angle brackets, we don't want to split on delimiters inside of them. To effect this, we
-- use parse_multi_delimiter_balanced_segment_run() to parse balanced brackets, then do delimiter splitting on the
-- non-bracketed portions of text using split_alternating_runs_escaping(), and concatenate back to a list of
-- strings. When calling parse_multi_delimiter_balanced_segment_run(), we make sure not to throw an error on
-- unbalanced brackets; in that case, we fall through to the code below that handles the case without brackets.
if text:find("") then
local runs = export.parse_multi_delimiter_balanced_segment_run(text, {{""}, {"<", ">"}},
"no error on unmatched")
if type(runs) ~= "string" then
local split_runs = export.split_alternating_runs_escaping(runs, splitchar, preserve_splitchar, escape_fun,
unescape_fun)
for i = 1, #split_runs, (preserve_splitchar and 2 or 1) do
split_runs = table.concat(split_runs)
end
return split_runs
end
end
-- First escape sequences we don't want to count for splitting.
local need_unescape
text, need_unescape = escape_fun(text)
local parts =
preserve_splitchar and m_string_utilities.split(text, "(" .. splitchar .. ")") or
rsplit(text, splitchar)
if need_unescape then
for i = 1, #parts, (preserve_splitchar and 2 or 1) do
parts = unescape_fun(parts)
end
end
return parts
end
--[==[
Split text on comma, but not on comma+whitespace. This is similar to `mw.text.split(text, ",")` but will not split
on commas directly followed by whitespace, to handle embedded commas in terms (which are almost always followed by
a space). `tempcomma` is the Unicode character to temporarily use when doing the splitting; normally U+FFF0, but
you can specify a different character if you use U+FFF0 for some internal purpose.
]==]
function export.split_on_comma(text, tempcomma)
-- Don't do anything if no comma. Note that split_escaping() has a similar check at the beginning, so if there's a
-- comma we effectively do this check twice, but this is worth it to optimize for the common no-comma case.
if not text:find(",") then
return {text}
end
tempcomma = tempcomma or u(0xFFF0)
-- Replace comma with a temporary char in comma + whitespace.
local function escape_comma_whitespace(run)
return export.escape_comma_whitespace(run, tempcomma)
end
-- Undo replacement of comma with a temporary char in comma + whitespace.
local function unescape_comma_whitespace(run)
return export.unescape_comma_whitespace(run, tempcomma)
end
return export.split_escaping(text, ",", false, escape_comma_whitespace, unescape_comma_whitespace)
end
--[==[
Ensure that Wikicode (template calls, bracketed links, HTML, bold/italics, etc.) displays literally in error messages
by inserting a Unicode word-joiner symbol after all characters that may trigger Wikicode interpretation. Replacing
with equivalent HTML escapes doesn't work because they are displayed literally. I could not get this to work using
<nowiki>...</nowiki> (those tags display literally), using using {{#tag:nowiki|...}} (same thing) or using
mw.getCurrentFrame():extensionTag("nowiki", ...) (everything gets converted to a strip marker
`UNIQ--nowiki-00000000-QINU` or similar). FIXME: This is a massive hack; there must be a better way.
]==]
function export.escape_wikicode(term)
term = term:gsub("()", "%1" .. u(0x2060))
return term
end
function export.make_parse_err(arg_gloss)
return function(msg, stack_frames_to_ignore)
error(export.escape_wikicode(("%s: %s"):format(msg, arg_gloss)), stack_frames_to_ignore)
end
end
-- Parse a term that may include a link ']' or a two-part link ']'. FIXME: Doesn't currently
-- handle embedded links like '] ]' or ] ]' or ']s'; if they are detected, it returns
-- the term unchanged and `nil` for the display form.
local function parse_bracketed_term(term, parse_err)
local inside = term:match("^%%]$")
if inside then
if inside:find("%%]") then
-- embedded links, e.g. '] ]'; FIXME: we should process them properly
return term, nil
end
local parts = rsplit(inside, "|")
if #parts > 2 then
parse_err("Saw more than two parts inside a bracketed link")
end
return unpack(parts)
end
return term, nil
end
--[==[
Parse a term that may have a language code (or possibly multiple comma-separated language codes, if `allow_multiple`
is given) preceding it (e.g. {la:minūtia} or {grc:]} or {nan-hbl,hak:]]}). Return four
arguments:
# the term minus the language code;
# the language object corresponding to the language code (possibly a family object if `allow_family` is given), or a
list of such objects if `allow_multiple` is given;
# the link if the term is of the form {]} (it may be generated into that form with
Wikipedia and Wikisource prefixes) or of the form {{]}, otherwise the full term;
# the display part if the term is of the form {]}, otherwise nil.
Etymology-only languages are allowed. This function also correctly handles Wikipedia prefixes (e.g. {w:Abatemarco}
or {w:it:Colle Val d'Elsa} or {lw:ru:Филарет}) and Wikisource prefixes (e.g. {s:Twelve O'Clock} or
{s:]} or {s:fr:Perceval ou le conte du Graal} or {s:ro:]} or
{ls:ko:이상적 부인} or {ls:ko:]}) and converts them into two-part links,
with the display form not including the Wikipedia or Wikisource prefix unless it was explicitly specified using a
two-part link as in {lw:ru:]} or
{ls:ko:]}. The difference between {w:} ("Wikipedia") and {lw:} ("Wikipedia
link") is that the latter requires a language code and returns the corresponding language object; same for the
difference between {s:} ("Wikisource") and {ls:} ("Wikisource link").
NOTE: Embedded links are not correctly handled currently. If an embedded link is detected, the whole term is returned
as the link part (third argument), and the display part is nil. If you construct your own link from the link and
display parts, you must check for this.
`parse_err_or_paramname` is an optional function of one or two arguments to display an error, or a string naming a
parameter to display in the error message. If omitted, a function is generated based off of `term`. (The second
argument to the function is the number of stack frames to ignore when calling error(); if you declare your error
function with only one argument, things will still work fine.)
]==]
function export.parse_term_with_lang(data_or_term, parse_err_or_paramname)
if type(data_or_term) == "string" then
data_or_term = {
term = data_or_term
}
if type(parse_err_or_paramname) == "function" then
data_or_term.parse_err = parse_err_or_paramname
else
data_or_term.paramname = parse_err_or_paramname
end
end
local term = data_or_term.term
local parse_err = data_or_term.parse_err or
data_or_term.paramname and export.make_parse_err(("%s=%s"):format(data_or_term.paramname, term)) or
export.make_parse_err(term)
-- Parse off an initial language code (e.g. 'la:minūtia' or 'grc:]'). First check for Wikipedia
-- prefixes ('w:Abatemarco' or 'w:it:Colle Val d'Elsa' or 'lw:zh:邹衡') and Wikisource prefixes
-- ('s:ro:]' or 'ls:ko:이상적 부인'). Wikipedia/Wikisource language codes follow a similar
-- format to Wiktionary language codes (see below). Here and below we don't parse if there's a space after the
-- colon (happens e.g. if the user uses {{desc|...}} inside of {{col}}, grrr ...).
local termlang, foreign_wiki, actual_term = term:match("^(l?):(*):(.*)$")
if not termlang then
termlang, actual_term = term:match("^():(.*)$")
end
if termlang then
local wiki_links = termlang:find("^l")
local base_wiki_prefix = termlang:find("w$") and "w:" or "s:"
local wiki_prefix = base_wiki_prefix .. (foreign_wiki and foreign_wiki .. ":" or "")
local link, display = parse_bracketed_term(actual_term, parse_err)
if link:find("%[%[") or display and display:find("%[%[") then
-- FIXME, this should be handlable with the right parsing code
parse_err("Cannot have embedded brackets following a Wikipedia (w:... or lw:...) link; expand the term to a fully bracketed term w:] or similar")
end
local lang = wiki_links and require("Module:languages").getByCode(foreign_wiki, parse_err, "allow etym") or nil
local prefixed_link = wiki_prefix .. link
return ("]"):format(prefixed_link, display or link), lang, prefixed_link, display
end
-- Wiktionary language codes are in one of the following formats, where 'x' is a lowercase letter and 'X' an
-- uppercase letter:
-- xx
-- xxx
-- xxx-xxx
-- xxx-xxx-xxx (esp. for protolanguages)
-- xx-xxx (for etymology-only languages)
-- xx-xxx-xxx (maybe? for etymology-only languages)
-- xx-XX (for etymology-only languages, where XX is a country code, e.g. en-US)
-- xxx-XX (for etymology-only languages, where XX is a country code)
-- xx-xxx-XX (for etymology-only languages, where XX is a country code)
-- xxx-xxx-XX (for etymology-only langauges, where XX is a country code, e.g. nan-hbl-PH)
-- Things like xxx-x+ (e.g. cmn-pinyin, cmn-tongyong)
-- VL., LL., etc.
--
-- We check the for nonstandard Latin etymology language codes separately, and otherwise make only the following
-- assumptions:
-- (1) There are one to three hyphen-separated components.
-- (2) The last component can consist of two uppercase ASCII letters; otherwise, all components contain only
-- lowercase ASCII letters.
-- (3) Each component must have at least two letters.
-- (4) The first component must have two or three letters.
local function is_possible_lang_code(code)
-- Special hack for Latin variants, which can have nonstandard etym codes, e.g. VL., LL.
if code:find("^L%.$") then
return true
end
return code:find("^(?)$") or
code:find("^?%-$") or
code:find("^?%-+$") or
code:find("^?%-+%-$") or
code:find("^?%-+%-+$")
end
local function get_by_code(code, allow_bad)
local lang
if data_or_term.lang_cache then
lang = data_or_term.lang_cache
end
if lang == nil then
lang = require("Module:languages").getByCode(code, not allow_bad and parse_err or nil, "allow etym",
data_or_term.allow_family)
if data_or_term.lang_cache then
data_or_term.lang_cache = lang or false
end
end
return lang or nil
end
if data_or_term.allow_multiple then
local termlang_spec
termlang_spec, actual_term = term:match("^(+):(.*)$")
if termlang_spec then
termlang = rsplit(termlang_spec, ",")
local all_possible_code = true
for _, code in ipairs(termlang) do
if not is_possible_lang_code(code) then
all_possible_code = false
break
end
end
if all_possible_code then
local saw_nil = false
for i, code in ipairs(termlang) do
termlang = get_by_code(code, data_or_term.allow_bad)
if not termlang then
saw_nil = true
end
end
if saw_nil then
termlang = nil
else
term = actual_term
end
else
termlang = nil
end
end
else
termlang, actual_term = term:match("^(+):(.*)$")
if termlang then
if is_possible_lang_code(termlang) then
termlang = get_by_code(termlang, data_or_term.allow_bad)
if termlang then
term = actual_term
end
else
termlang = nil
end
end
end
local link, display = parse_bracketed_term(term, parse_err)
return term, termlang, link, display
end
--[==[
Parse a term that may have inline modifiers attached (e.g. {rifiuti<q:plural-only>} or
{rinfusa<t:bulk cargo><lit:resupplying><qq:more common in the plural {{m|it|rinfuse}}>}).
* `arg` is the term to parse.
* `props` is an object holding further properties controlling how to parse the term (only `param_mods` and
`generate_obj` are required):
** `paramname` is the name of the parameter where `arg` comes from, or nil if this isn't available (it is used only in
error messages).
** `param_mods` is a table describing the allowed inline modifiers (see below).
** `generate_obj` is a function of one or two arguments that should parse the argument minus the inline modifiers and
return a corresponding parsed object (into which the inline modifiers will be rewritten). If declared with one
argument, that will be the raw value to parse; if declared with two arguments, the second argument will be the
`parse_err` function (see below).
** `parse_err` is an optional function of one argument (an error message) and should display the error message, along
with any desired contextual text (e.g. the argument name and value that triggered the error). If omitted, a default
function will be generated which displays the error along with the original value of `arg` (passed through
{escape_wikicode()} above to ensure that Wikicode (such as links) is displayed literally).
** `splitchar` is a Lua pattern. If specified, `arg` can consist of multiple delimiter-separated terms, each of which
may be followed by inline modifiers, and the return value will be a list of parsed objects instead of a single
object. Note that splitting on delimiters will not happen in certain protected sequences (by default
comma+whitespace; see below). The algorithm to split on delimiters is sensitive to inline modifier syntax and will
not be confused by delimiters inside of inline modifiers, which do not trigger splitting (whether or not contained
within protected sequences).
** `outer_container`, if specified, is used when multiple delimiter-separated terms are possible, and is the object
into which the list of per-term objects is stored (into the `terms` field) and into which any modifiers that are
given the `overall` property (see below) will be stored. If given, this value will be returned as the value of
{parse_inline_modifiers()}. If `outer_container` is not given, {parse_inline_modifiers()} will return the list of
per-term objects directly, and no modifier may have an `overall` property.
** `preserve_splitchar`, if specified, causes the actual delimiter matched by `splitchar` to be returned in the
parsed object describing the element that comes after the delimiter. The delimiter is stored in a key whose
name is controlled by `separator_key`, which defaults to "separator".
** `separator_key` controls the key into which the actual delimiter is written when `preserve_splitchar` is used.
See above.
** `escape_fun` and `unescape_fun` are as in split_escaping() and split_alternating_runs_escaping() above and
control the protected sequences that won't be split. By default, `escape_comma_whitespace` and
`unescape_comma_whitespace` are used, so that comma+whitespace sequences won't be split.
** `pre_normalize_modifiers`, if specified, is a function of one argument, which can be used to "normalize" modifiers
prior to further parsing. This is used, for example, in ] to convert modifiers of the
form `<noun^expectation; hope>` to `<t:noun^expectation; hope>`, so they can be processed as standard modifiers. It
is also used in ] to convert footnotes of the form `` to `<footnote:>`, to allow for
mixing bracketed footnotes and inline modifiers when overriding verbal nouns and such. It could similarly be used to
handle boolean modifiers like `<slb>` in {{tl|desc}} and convert them to a standard form `<slb:1>`. It runs just
before parsing out the modifier prefix and value, and is passed an object containing fields `modtext` (the
un-normalized modifier text, including surrounding angle brackets, or in some cases, text surrounded by other
delimiters such as square brackets, if `parse_inline_modifiers_from_segments()` is being called and the caller did
their own parsing of balanced segment runs) and `parse_err` (the passed-in or autogenerated function to signal an
error during parsing; a function of one argument, a message, which throws an error displaying that message). It
should return a single value, the normalized value of `modtext`, including surrounding angle brackets.
`param_mods` is a table describing allowed modifiers. The keys of the table are modifier prefixes and the values are
tables describing how to parse and store the associated modifier values. Here is a typical example, for an item that
takes the standard modifiers associated with `full_link()` in ], as well as left and right qualifiers
and labels:
{
local param_mods = {
alt = {},
t = {
-- ] expects the gloss in "gloss".
item_dest = "gloss",
},
gloss = {},
tr = {},
ts = {},
g = {
-- ] expects the genders in "g". `sublist = true` automatically splits on comma (optionally
-- with surrounding whitespace).
item_dest = "genders",
sublist = true,
},
pos = {},
lit = {},
id = {},
sc = {
-- Automatically parse as a script code and convert to a script object.
type = "script",
},
-- Qualifiers and labels
q = {
type = "qualifier",
},
qq = {
type = "qualifier",
},
l = {
type = "labels",
},
ll = {
type = "labels",
},
}
}
In the table values:
* `item_dest` specifies the destination key to store the object into (if not the same as the modifier key itself).
* `type`, `set`, `sublist` and `convert` have the same meaning as in ] and are used for converting
the object from the string form given by the user into the form needed for further processing. Note that `type` makes
use of additional properties that may be specified. Specifically, if {type = "language"}, the properties `family` and
`method` are also examined, and if {type = "family"} or {type = "script"}, the property `method` is examined.
* `store` describes how to store the converted modifier value into the parsed object. If omitted, the converted value
is simply written into the parsed object under the appropriate key; but an error is generated if the key already has
a value. (This means that multiple occurrences of a given modifier are allowed if `store` is given, but not
otherwise.) `store` can be one of the following:
** {"insert"}: the converted value is appended to the key's value using {table.insert()}; if the key has no value, it
is first converted to an empty list;
** {"insertIfNot"}: is similar but appends the value using {insertIfNot()} in ];
** {"insert-flattened"}, the converted value is assumed to be a list and the objects are appended one-by-one into the
key's existing value using {table.insert()};
** {"insertIfNot-flattened"} is similar but appends using {insertIfNot()} in ]; (WARNING: When using
{"insert-flattened"} and {"insertIfNot-flattened"}, if there is no existing value for the key, the converted value is
just stored directly. This means that future appends will side-effect that value, so make sure that the return value
of the conversion function for this key generates a fresh list each time.)
** a function of one argument, an object with the following properties:
*** `dest`: the object to write the value into;
*** `key`: the field where the value should be written;
*** `converted`: the (converted) value to write;
*** `raw_val`: the raw, user-specified value (a string);
*** `parse_err`: a function of one argument (an error string), which signals an error, and includes extra context in
the message about the modifier in question, the angle-bracket spec that includes the modifier in it, the overall
value, and (if `paramname` was given) the parameter holding the overall value.
* `overall` only applies if `splitchar` is given. In this case, the modifier applies to the entire argument rather than
to an individual term in the argument, and must occur after the last item separated by `splitchar`, instead of being
allowed to occur after any of them. The modifier will be stored into the outer container object, which must exist
(i.e. `outer_container` must have been given).
The return value of {parse_inline_modifiers()} depends on whether `splitchar` and `outer_container` have been given. If
neither is given, the return value is the object returned by `generate_obj`. If `splitchar` but not `outer_container` is
given, the return value is a list of per-term objects, each of which is generated by `generate_obj`. If both `splitchar`
and `outer_container` are given, the return value is the value of `outer_container` and the per-term objects are stored
into the `terms` field of this object.
]==]
function export.parse_inline_modifiers(arg, props)
local segments = export.parse_balanced_segment_run(arg, "<", ">")
local function verify_no_overall()
for mod, mod_props in pairs(props.param_mods) do
if mod_props.overall then
error("Internal caller error: Can't specify `overall` for a modifier in `param_mods` unless `outer_container` property is given")
end
end
end
if not props.splitchar then
if props.outer_container then
error("Internal caller error: Can't specify `outer_container` property unless `splitchar` is given")
end
verify_no_overall()
return export.parse_inline_modifiers_from_segments {
group = segments,
group_index = nil,
separated_groups = nil,
arg = arg,
props = props
}
else
local terms = {}
if props.outer_container then
props.outer_container.terms = terms
else
verify_no_overall()
end
local separated_groups = export.split_alternating_runs_escaping(segments, props.splitchar,
props.preserve_splitchar, props.escape_fun or export.escape_comma_whitespace,
props.unescape_fun or export.unescape_comma_whitespace)
for j = 1, #separated_groups, (props.preserve_splitchar and 2 or 1) do
local parsed = export.parse_inline_modifiers_from_segments {
group = separated_groups,
group_index = j,
separated_groups = separated_groups,
arg = arg,
props = props
}
if props.preserve_splitchar and j > 1 then
parsed = separated_groups
end
table.insert(terms, parsed)
end
if props.outer_container then
return props.outer_container
else
return terms
end
end
end
--[==[
Parse a single term that may have inline modifiers attached. This is a helper function of {parse_inline_modifiers()} but
is exported separately in case the caller needs to make their own call to {parse_balanced_segment_run()} (as in
], which splits on several matched delimiters simultaneously). It takes only a single argument, `data`,
which is an object with the following fields:
* `group`: A list of segments as output by {parse_balanced_segment_run()} (see the overall comment at the top of
]), or one of the lists returned by calling {split_alternating_runs()}.
* `separated_groups`: The list of groups (each of which is of the form of `group`) describing all the terms in the
argument parsed by {parse_inline_modifiers()}, or {nil} if this isn't applicable (i.e. multiple terms aren't allowed
in the argument).
* `group_index`: The index into `separated_groups` where `group` can be found, or {nil} if not applicable (see below).
* `arg`: The original user-specified argument being parsed; used only for error messages and only when `props.parse_err`
is not specified.
* `props`: The `props` argument to {parse_inline_modifiers()}.
The return value is the object created by `generate_obj`, with properties filled in describing the modifiers of the
term in question. Note that `props.outer_container` and the `overall` setting of the `props.param_mods` structure are
respected, but `props.splitchar` is ignored because the splitting happens in the caller. Specifically, if there are any
modifiers with the `overall` setting, `props.separated_groups` and `props.group_index` must be given so that the
function is able to determine if the modifier is indeed attached to the last term, and `props.outer_container` must be
given because that is where such modifiers are stored. Otherwise, none of these settings need be given.
]==]
function export.parse_inline_modifiers_from_segments(data)
local props = data.props
local group = data.group
local function get_valid_prefixes()
local valid_prefixes = {}
for param_mod, _ in pairs(props.param_mods) do
table.insert(valid_prefixes, param_mod)
end
table.sort(valid_prefixes)
return valid_prefixes
end
local function get_arg_gloss()
if props.paramname then
return ("%s=%s"):format(props.paramname, data.arg)
else
return data.arg
end
end
local parse_err = props.parse_err or export.make_parse_err(get_arg_gloss())
local term_obj = props.generate_obj(group, parse_err)
for k = 2, #group - 1, 2 do
if group ~= "" then
parse_err("Extraneous text '" .. group .. "' after modifier")
end
local group_k = group
if props.pre_normalize_modifiers then
-- FIXME: For some use cases, we might have to pass more information.
group_k = props.pre_normalize_modifiers {
modtext = group_k,
parse_err = parse_err
}
end
local modtext = group_k:match("^<(.*)>$")
if not modtext then
parse_err("Internal error: Modifier '" .. group_k .. "' isn't surrounded by angle brackets")
end
local prefix, val = modtext:match("^(+):(.*)$")
if not prefix then
local valid_prefixes = get_valid_prefixes()
for i, valid_prefix in ipairs(valid_prefixes) do
valid_prefixes = "'" .. valid_prefix .. ":'"
end
parse_err(("Modifier %s%s lacks a prefix, should begin with one of %s"):format(
group_k, group_k ~= group and (" (normalized from %s)"):format(group) or "",
list_to_text(valid_prefixes)))
end
local prefix_parse_err
if props.parse_err then
prefix_parse_err = function(msg, stack_frames_to_ignore)
props.parse_err(("%s: modifier prefix '%s' in %s"):format(msg, prefix, group),
stack_frames_to_ignore)
end
else
prefix_parse_err = export.make_parse_err(("modifier prefix '%s' in %s in %s"):format(
prefix, group, get_arg_gloss()))
end
if props.param_mods then
local mod_props = props.param_mods
local key = mod_props.item_dest or prefix
local dest
if mod_props.overall then
if not data.separated_groups then
prefix_parse_err("Internal error: `data.separated_groups` not given when `overall` is seen")
end
if not props.outer_container then
-- This should have been caught earlier during validation in parse_inline_modifiers().
prefix_parse_err("Internal error: `props.outer_container` not given when `overall` is seen")
end
if data.group_index ~= #data.separated_groups then
prefix_parse_err("Prefix should occur after the last comma-separated term")
end
dest = props.outer_container
else
dest = term_obj
end
local converted = val
if mod_props.type or mod_props.set or mod_props.sublist or mod_props.convert then
-- WARNING: Here as an optimization we embed some knowledge of convert_val() in ],
-- specifically that if none of `type`, `set`, `sublist` and `convert` are set, the conversion is an
-- identity operation and can be skipped. (convert_val() also makes use of the fields `method` and
-- `family`, but only if `type` is set to certain values such as "language", "family" or "script", and
-- makes use of the field `required`, but only if `set` is set.) If this becomes problematic, consider
-- removing the optimization.
converted = require(parameters_module).convert_val(converted, prefix_parse_err, mod_props)
end
local store = props.param_mods.store
if not store then
if dest then
prefix_parse_err("Prefix occurs twice")
end
dest = converted
elseif store == "insert" then
if not dest then
dest = {converted}
else
table.insert(dest, converted)
end
elseif store == "insertIfNot" then
if not dest then
dest = {converted}
else
require("Module:table").insertIfNot(dest, converted)
end
elseif store == "insert-flattened" then
if not dest then
dest = converted
else
for _, obj in ipairs(converted) do
table.insert(dest, obj)
end
end
elseif store == "insertIfNot-flattened" then
if not dest then
dest = converted
else
for _, obj in ipairs(converted) do
require("Module:table").insertIfNot(dest, obj)
end
end
elseif type(store) == "string" then
prefix_parse_err(("Internal caller error: Unrecognized value '%s' for `store` property"):format(store))
elseif type(store) ~= "function" then
prefix_parse_err(("Internal caller error: Unrecognized type for `store` property %s"):format(
mw.dumpObject(store)))
else
store {
dest = dest,
key = key,
converted = converted,
raw = val,
parse_err = prefix_parse_err
}
end
else
local valid_prefixes = get_valid_prefixes()
for i, valid_prefix in ipairs(valid_prefixes) do
valid_prefixes = "'" .. valid_prefix .. "'"
end
prefix_parse_err("Unrecognized prefix, should be one of " ..
list_to_text(valid_prefixes))
end
end
return term_obj
end
return export