<span class="searchmatch">de</span> <span class="searchmatch">Bruijn</span> <span class="searchmatch">graphs</span> plural of <span class="searchmatch">de</span> <span class="searchmatch">Bruijn</span> <span class="searchmatch">graph</span>...
article on: <span class="searchmatch">de</span> <span class="searchmatch">Bruijn</span> <span class="searchmatch">graph</span> Wikipedia Named after the Dutch mathematician Nicolaas Govert <span class="searchmatch">de</span> <span class="searchmatch">Bruijn</span>. <span class="searchmatch">de</span> <span class="searchmatch">Bruijn</span> <span class="searchmatch">graph</span> (plural <span class="searchmatch">de</span> <span class="searchmatch">Bruijn</span> <span class="searchmatch">graphs</span>) (<span class="searchmatch">graph</span> theory)...
article on: <span class="searchmatch">de</span> <span class="searchmatch">Bruijn</span>-Erdős theorem Wikipedia Named after the mathematicians Nicolaas Govert <span class="searchmatch">de</span> <span class="searchmatch">Bruijn</span> and Paul Erdős. <span class="searchmatch">de</span> <span class="searchmatch">Bruijn</span>-Erdős theorem (<span class="searchmatch">graph</span> theory)...
an s-<span class="searchmatch">graph</span>. A morphism of <span class="searchmatch">graphs</span> φ : Δ ′ → Δ ″ {\displaystyle \varphi :\Delta '\rightarrow \Delta ''} is a continuous epimorphic map of <span class="searchmatch">graphs</span> compatible...