epsilon number

Hello, you have come here looking for the meaning of the word epsilon number. In DICTIOUS you will not only get to know all the dictionary meanings for the word epsilon number, but we will also tell you about its etymology, its characteristics and you will know how to say epsilon number in singular and plural. Everything you need to know about the word epsilon number you have here. The definition of the word epsilon number will help you to be more precise and correct when speaking or writing your texts. Knowing the definition ofepsilon number, as well as those of other words, enriches your vocabulary and provides you with more and better linguistic resources.

English

Etymology

From the Greek letter ε (epsilon), used to denote the numbers.

Noun

epsilon number (plural epsilon numbers)

  1. (set theory) Any (necessarily transfinite) ordinal number α such that ωα = α; (by generalisation) any surreal number that is a fixed point of the exponential map x → ωx.
    • 1977, Herbert B. Enderton, Elements of Set Theory, Elsevier (Academic Press), page 240:
      More generally, the epsilon numbers are the ordinals for which . The smallest epsilon number is . It is a countable ordinal, being the countable union of countable sets. By the Veblen fixed-point theorem, the class of epsilon numbers is unbounded.
    • 1981, The Journal of Symbolic Logic, Association for Symbolic Logic, page 17:
      We show that the associated ordinals are the th epsilon number and the first -critical number, respectively.
    • 2014, Charles C. Pinter, A Book of Set Theory, 2014, Dover, , page 203,
      Thus there is at least one epsilon number, namely ; we can easily show, in fact, that is the least epsilon number.

Usage notes

  • The smallest epsilon number, denoted (read epsilon nought or epsilon zero), is a limit ordinal definable as the supremum of a sequence of smaller limit ordinals: .
    • This sequence can be extended recursively: , , , ...
    • The recursion is applied transfinitely, thus extending the definition to , ...
  • is countable, as is any for which is countable.
    • Epsilon numbers also exist that are uncountable; the index of any such must itself be an uncountable ordinal.
  • When generalised to the surreal number domain, epsilon numbers are no longer required to be ordinals and the index may be any surreal number (including any negative, fraction or limit).

Translations

See also

Further reading