Warning: Undefined variable $resultados in /home/enciclo/public_html/dictious.com/search.php on line 17
forgetful_functor - Dictious

8 Results found for " forgetful_functor"

forgetful functor

Wikipedia has an article on: <span class="searchmatch">forgetful</span> <span class="searchmatch">functor</span> Wikipedia <span class="searchmatch">forgetful</span> <span class="searchmatch">functor</span> (plural <span class="searchmatch">forgetful</span> <span class="searchmatch">functors</span>) (category theory) a <span class="searchmatch">functor</span> that forgets or drops some...


forgetful functors

<span class="searchmatch">forgetful</span> <span class="searchmatch">functors</span> plural of <span class="searchmatch">forgetful</span> <span class="searchmatch">functor</span>...


forgetful

properties before producing an output. a <span class="searchmatch">forgetful</span> mapping; a <span class="searchmatch">forgetful</span> <span class="searchmatch">functor</span> <span class="searchmatch">forgetful</span> <span class="searchmatch">functor</span> <span class="searchmatch">forgetfully</span> <span class="searchmatch">forgetfulness</span> unforgetful liable to forget...


underlying functor

underlying <span class="searchmatch">functor</span> (plural underlying <span class="searchmatch">functors</span>) (category theory) a <span class="searchmatch">forgetful</span> <span class="searchmatch">functor</span> 1995, Michael Barr with Charles Wells, Category Theory for Computing...


varpi

varpi (“exact <span class="searchmatch">functor</span>”) gleymskuvarpi (“<span class="searchmatch">forgetful</span> <span class="searchmatch">functor</span>”) hálffleygaður varpi (“half-exact <span class="searchmatch">functor</span>”) hjávarpi (“contravariant <span class="searchmatch">functor</span>”) meðbrigðinn...


functor

to a <span class="searchmatch">functor</span> in category theory. adjoint <span class="searchmatch">functor</span> anafunctor bifunctor contravariant <span class="searchmatch">functor</span> faithful <span class="searchmatch">functor</span> <span class="searchmatch">forgetful</span> <span class="searchmatch">functor</span> full <span class="searchmatch">functor</span> <span class="searchmatch">functor</span> category...


cocompletions

yoneda embeddings in K {\displaystyle {\mathcal {K}}} lift along these <span class="searchmatch">forgetful</span> <span class="searchmatch">functors</span>, as well as ensuring that such lifted algebraic yoneda embeddings...


short exact sequence

S e t {\displaystyle \mathbf {Set} } (or any category that has a <span class="searchmatch">forgetful</span> <span class="searchmatch">functor</span> to S e t {\displaystyle \mathbf {Set} } ). Function i is an injection...