English Wikipedia has an article on: <span class="searchmatch">p</span>-<span class="searchmatch">adic</span> <span class="searchmatch">number</span> Wikipedia <span class="searchmatch">p</span>-<span class="searchmatch">adic</span> <span class="searchmatch">number</span> (plural <span class="searchmatch">p</span>-<span class="searchmatch">adic</span> numbers) (<span class="searchmatch">number</span> theory) An element of a completion of the field...
From <span class="searchmatch">p</span> + -<span class="searchmatch">adic</span>. The letter <span class="searchmatch">p</span> follows common <span class="searchmatch">number</span> theory usage in representing an arbitrary prime <span class="searchmatch">number</span>; the suffix -<span class="searchmatch">adic</span> signals that properties of...
<span class="searchmatch">p</span>-<span class="searchmatch">adic</span> numbers plural of <span class="searchmatch">p</span>-<span class="searchmatch">adic</span> <span class="searchmatch">number</span>...
<span class="searchmatch">p</span>-<span class="searchmatch">adic</span> ultrametric (plural <span class="searchmatch">p</span>-<span class="searchmatch">adic</span> ultrametrics) (<span class="searchmatch">number</span> theory) The ultrametric with prime <span class="searchmatch">number</span> <span class="searchmatch">p</span> as parameter defined as d <span class="searchmatch">p</span> ( x , y ) = | x − y |...
article on: <span class="searchmatch">p</span>-<span class="searchmatch">adic</span> order Wikipedia <span class="searchmatch">p</span>-<span class="searchmatch">adic</span> ordinal (plural <span class="searchmatch">p</span>-<span class="searchmatch">adic</span> ordinals) (<span class="searchmatch">number</span> theory) A function of rational numbers, with prime <span class="searchmatch">number</span> <span class="searchmatch">p</span> as parameter...
article on: <span class="searchmatch">p</span>-<span class="searchmatch">adic</span> order Wikipedia <span class="searchmatch">p</span>-<span class="searchmatch">adic</span> order (plural <span class="searchmatch">p</span>-<span class="searchmatch">adic</span> orders) (<span class="searchmatch">number</span> theory) Of a positive integer n, the exponent of the highest power of <span class="searchmatch">p</span> that divides...
<span class="searchmatch">p</span>-<span class="searchmatch">adic</span> norm (plural <span class="searchmatch">p</span>-<span class="searchmatch">adic</span> norms) (<span class="searchmatch">number</span> theory) A <span class="searchmatch">p</span>-<span class="searchmatch">adic</span> absolute value, for a given prime <span class="searchmatch">number</span> <span class="searchmatch">p</span>, the function, denoted |..|<span class="searchmatch">p</span> and defined on the rational...
n + -<span class="searchmatch">adic</span>. n-<span class="searchmatch">adic</span> (not comparable) (mathematics) Of the order n. (chemistry, logic) Having a valency of n. having a valency of n <span class="searchmatch">p</span>-<span class="searchmatch">adic</span> <span class="searchmatch">number</span> Candi...
related <span class="searchmatch">adicity</span> and Latinate -ary. The algebraic sense is by analogy with <span class="searchmatch">p</span>-<span class="searchmatch">adic</span>, since Z ( <span class="searchmatch">p</span> ) {\displaystyle \mathbb {Z} _{(<span class="searchmatch">p</span>)}} equipped with the ( <span class="searchmatch">p</span> ) {\displaystyle...
<span class="searchmatch">p</span>-<span class="searchmatch">adic</span> absolute value (plural <span class="searchmatch">p</span>-<span class="searchmatch">adic</span> absolute values) (<span class="searchmatch">number</span> theory, field theory) A norm for the rational numbers, with some prime <span class="searchmatch">number</span> <span class="searchmatch">p</span> as parameter...