<span class="searchmatch">roots</span> <span class="searchmatch">of</span> <span class="searchmatch">unity</span> plural <span class="searchmatch">of</span> root <span class="searchmatch">of</span> <span class="searchmatch">unity</span>...
Wikipedia has an article on: root <span class="searchmatch">of</span> <span class="searchmatch">unity</span> Wikipedia root <span class="searchmatch">of</span> <span class="searchmatch">unity</span> (plural <span class="searchmatch">roots</span> <span class="searchmatch">of</span> <span class="searchmatch">unity</span>) (number theory) An element <span class="searchmatch">of</span> a given field (especially, a complex...
article on: Root <span class="searchmatch">of</span> <span class="searchmatch">unity</span> Wikipedia cyclotomics (uncountable) (mathematics) The branch <span class="searchmatch">of</span> mathematics concerned with the complex <span class="searchmatch">roots</span> <span class="searchmatch">of</span> <span class="searchmatch">unity</span>; cyclotomy....
partition <span class="searchmatch">of</span> <span class="searchmatch">unity</span> root <span class="searchmatch">of</span> <span class="searchmatch">unity</span> tri-<span class="searchmatch">unity</span> <span class="searchmatch">unity</span> is strength <span class="searchmatch">unity</span> makes strength <span class="searchmatch">unity</span> <span class="searchmatch">of</span> action <span class="searchmatch">unity</span> <span class="searchmatch">of</span> place <span class="searchmatch">unity</span> <span class="searchmatch">of</span> time unique unus state <span class="searchmatch">of</span> being...
-ic. cyclotomic (not comparable) <span class="searchmatch">of</span>, or relating to cyclotomy (mathematics) <span class="searchmatch">of</span>, or relating to the complex <span class="searchmatch">roots</span> <span class="searchmatch">of</span> <span class="searchmatch">unity</span> anticyclotomic cyclotomically cyclotomic...
equal segments, and of constructing regular polygons (mathematics) the analytical extraction <span class="searchmatch">of</span> the complex <span class="searchmatch">roots</span> <span class="searchmatch">of</span> <span class="searchmatch">unity</span>; a de Moivre number cyclotomic...
integer n, a polynomial whose <span class="searchmatch">roots</span> are the primitive nth <span class="searchmatch">roots</span> <span class="searchmatch">of</span> <span class="searchmatch">unity</span>, so that its degree is Euler's totient function <span class="searchmatch">of</span> n. That is, letting ζ n = e...
divides the class number of the cyclotomic field of p-th <span class="searchmatch">roots</span> <span class="searchmatch">of</span> <span class="searchmatch">unity</span> iff p divides the numerator <span class="searchmatch">of</span> the n-th Bernoulli number Bn for some n, 0 < n < p −...
obtained by adjoining to Q {\displaystyle \mathbb {Q} } <span class="searchmatch">roots</span> <span class="searchmatch">of</span> <span class="searchmatch">unity</span>, i.e. <span class="searchmatch">roots</span> <span class="searchmatch">of</span> polynomials <span class="searchmatch">of</span> the form X n − 1 {\displaystyle X^{n}-1} , although the...
an article on: primitive root Wikipedia primitive root (plural primitive <span class="searchmatch">roots</span>) (mathematics, number theory) For a given modulus n, a number g such that...