<span class="searchmatch">unique</span> <span class="searchmatch">factorization</span> <span class="searchmatch">ring</span> (plural <span class="searchmatch">unique</span> <span class="searchmatch">factorization</span> <span class="searchmatch">rings</span>) (algebra, <span class="searchmatch">ring</span> theory) A <span class="searchmatch">ring</span> in which every non-zero, non-unit (i.e., proper) element can...
<span class="searchmatch">unique</span> <span class="searchmatch">factorization</span> <span class="searchmatch">rings</span> plural of <span class="searchmatch">unique</span> <span class="searchmatch">factorization</span> <span class="searchmatch">ring</span>...
<span class="searchmatch">unique</span> <span class="searchmatch">factorization</span> domain Wikipedia <span class="searchmatch">unique</span> <span class="searchmatch">factorization</span> domain (plural <span class="searchmatch">unique</span> <span class="searchmatch">factorization</span> domains) (algebra, <span class="searchmatch">ring</span> theory) A <span class="searchmatch">unique</span> <span class="searchmatch">factorization</span>...
172: Actual <span class="searchmatch">factorizations</span> are now known for every p ≤ 89. complete <span class="searchmatch">factorization</span> integer <span class="searchmatch">factorization</span> overfactorization prime <span class="searchmatch">factorization</span> refactorization...
non-<span class="searchmatch">unique</span> uniq fruit <span class="searchmatch">unique</span> <span class="searchmatch">factorization</span> domain <span class="searchmatch">unique</span> <span class="searchmatch">factorization</span> <span class="searchmatch">ring</span> <span class="searchmatch">unique</span>-headed bug <span class="searchmatch">unique</span> identification number <span class="searchmatch">unique</span> identifier <span class="searchmatch">unique</span> key...
principal ideal. PID <span class="searchmatch">unique</span> <span class="searchmatch">factorization</span> domain, Noetherian domain integral domain commutative <span class="searchmatch">ring</span> Dedekind domain principal ideal <span class="searchmatch">ring</span> Bézout domain Euclidean...
<span class="searchmatch">factorization</span> <span class="searchmatch">ring</span> vaginal <span class="searchmatch">ring</span> valuation <span class="searchmatch">ring</span> vortex <span class="searchmatch">ring</span> v-<span class="searchmatch">ring</span> Waldeyer's <span class="searchmatch">ring</span> wedding-<span class="searchmatch">ring</span> wedding <span class="searchmatch">ring</span> wrestling <span class="searchmatch">ring</span> X-<span class="searchmatch">ring</span> zero <span class="searchmatch">ring</span> red <span class="searchmatch">ring</span> Descendants...
prime ideal if and only if the factor <span class="searchmatch">ring</span> R / P {\displaystyle R/P} is a domain. integral domain <span class="searchmatch">unique</span> <span class="searchmatch">factorization</span> domain, Noetherian domain principal...
theorem (number theory) A theorem that states precisely which quadratic imaginary number fields admit <span class="searchmatch">unique</span> <span class="searchmatch">factorization</span> in their <span class="searchmatch">ring</span> of integers....
integer d such that the imaginary quadratic field Q(√(−d)) has class number 1; equivalently, such that its <span class="searchmatch">ring</span> of integers has <span class="searchmatch">unique</span> <span class="searchmatch">factorization</span>....