A Kociemba-algoritmus egy kétlépéses heurisztikus megközelítés a Rubik-kocka megoldására. Az algoritmus célja, hogy minimális számú lépéssel találjon megoldást. Az alábbiakban bemutatom a Kociemba-algoritmus általános folyamatát, valamint a Python és C++ implementációk alapjait.
function Kociemba(state): phase1_result = Phase1(state) if phase1_result == None: return None phase2_result = Phase2(phase1_result) if phase2_result == None: return None return CombineSolutions(phase1_result, phase2_result) function Phase1(state): Reduce to "G1 group" (orient the edges and corners, reduce face centers) Perform breadth-first or heuristic search to find the solution steps Return G1 state and solution sequence function Phase2(state): From the G1 group, reduce the cube to the solved state Perform heuristic search with pruning tables to find the solution Return the solution sequence function CombineSolutions(phase1_solution, phase2_solution): Concatenate the moves from both phases Optimize redundant moves (e.g., F F -> F2) Return final solution sequence
Pythonban használhatjuk az kociemba
csomagot (amely implementálja az algoritmust).
Telepítés:
pip install kociemba
Használat:
import kociemba
# Példa állapot (scrambled cube state)
# A bemenet egyetlen karakterlánc, amely a kocka aktuális színeit adja meg
# Példa: 'UUUUUUUUURRRRRRRRRFFFFFFFFFDDDDDDDDDLLLLLLLLLBBBBBBBBB'
scrambled_state = 'DUUBULDLFDFFURDDFLLBDRRRRUBDBFLLRUBBBUFUDFFLLDUBBBFUU'
# Megoldás
solution = kociemba.solve(scrambled_state)
print("Rubik-kocka megoldás lépései:", solution)
Egy egyszerűbb implementáció (csak a struktúra, nem teljes):
class KociembaSolver:
def __init__(self, cube_state):
self.cube_state = cube_state
def solve(self):
# Phase 1: Reduce to G1 group
phase1_solution = self.phase1(self.cube_state)
# Phase 2: Solve from G1 to completed state
phase2_solution = self.phase2(phase1_solution)
# Combine solutions
return self.combine_solutions(phase1_solution, phase2_solution)
def phase1(self, state):
# Reduce the cube to the G1 group
# (orient edges, corners, and centers)
print("Phase 1: Reducing to G1...")
# Placeholder logic
return {'state': state, 'moves': }
def phase2(self, state):
# Solve from G1 group to solved state
print("Phase 2: Solving from G1 to solved state...")
# Placeholder logic
return {'moves': }
def combine_solutions(self, phase1_moves, phase2_moves):
# Combine and optimize moves
print("Combining solutions...")
return phase1_moves + phase2_moves
# Használat
solver = KociembaSolver(cube_state="scrambled state placeholder")
solution = solver.solve()
print("Megoldás lépései:", solution)
A Kociemba-algoritmus implementálása C++-ban komplexebb, de az alábbiakban bemutatom az alapstruktúrát.
#include <iostream>
#include <vector>
#include <string>
class KociembaSolver {
public:
std::string solve(const std::string& cube_state) {
// Phase 1: Reduce to G1 group
auto phase1_result = phase1(cube_state);
// Phase 2: Solve from G1 to solved state
auto phase2_result = phase2(phase1_result.first);
// Combine and return the solutions
return combineSolutions(phase1_result.second, phase2_result);
}
private:
std::pair<std::string, std::vector<std::string>> phase1(const std::string& state) {
std::cout << "Phase 1: Reducing to G1 group...\n";
// Placeholder logic
std::vector<std::string> moves = {"U", "R", "U2"};
return {state, moves};
}
std::vector<std::string> phase2(const std::string& state) {
std::cout << "Phase 2: Solving from G1 to solved state...\n";
// Placeholder logic
return {"F", "R2", "U"};
}
std::string combineSolutions(const std::vector<std::string>& phase1_moves,
const std::vector<std::string>& phase2_moves) {
std::cout << "Combining solutions...\n";
std::string solution;
for (const auto& move : phase1_moves) solution += move + " ";
for (const auto& move : phase2_moves) solution += move + " ";
return solution;
}
};
int main() {
KociembaSolver solver;
std::string scrambled_state = "scrambled state placeholder";
std::string solution = solver.solve(scrambled_state);
std::cout << "Rubik-kocka megoldás lépései: " << solution << std::endl;
return 0;
}
A Kociemba-algoritmus hatékonyságának kulcsa a pruning táblák, amelyek a megoldási lépéseket előre kiszámított állapotok alapján gyorsítják fel. Ezeket dinamikusan lehet generálni a Rubik-kocka állapottér alapján.