beáraz <span class="searchmatch">factor</span> <span class="searchmatch">in</span> - Szótár.net (en-hu) <span class="searchmatch">factor</span> <span class="searchmatch">in</span> - Sztaki (en-hu) <span class="searchmatch">factor</span> <span class="searchmatch">in</span> - Merriam–Webster <span class="searchmatch">factor</span> <span class="searchmatch">in</span> - Cambridge <span class="searchmatch">factor</span> <span class="searchmatch">in</span> - WordNet <span class="searchmatch">factor</span> <span class="searchmatch">in</span> - Яндекс...
necrosis <span class="searchmatch">factor</span> (tsz. tumor necrosis factors) (gyógyszertan) tumornekrózis faktor tumor necrosis <span class="searchmatch">factor</span> - Szótár.net (en-hu) tumor necrosis <span class="searchmatch">factor</span> - Sztaki...
<algorithm> <span class="searchmatch">int</span> main() { std::vector<<span class="searchmatch">int</span>> v{1, 2, 3, 4, 5}; <span class="searchmatch">int</span> <span class="searchmatch">factor</span> = 2; std::for_each(v.begin(), v.end(), [<span class="searchmatch">factor</span>](<span class="searchmatch">int</span> x) { std::cout << x * <span class="searchmatch">factor</span> << "...
std; double roundToN(double num, <span class="searchmatch">int</span> n) { double <span class="searchmatch">factor</span> = pow(10, n); // 10^n return round(num * <span class="searchmatch">factor</span>) / <span class="searchmatch">factor</span>; } <span class="searchmatch">int</span> main() { double num = 3.14159;...
alatt for j <span class="searchmatch">in</span> range(i + 1, n): <span class="searchmatch">factor</span> = C[j, i] / C[i, i] C[j, i:] -= <span class="searchmatch">factor</span> * C[i, i:] # Visszahelyettesítés x = np.zeros(n) for i <span class="searchmatch">in</span> range(n - 1,...
determinánst for (<span class="searchmatch">int</span> k = i + 1; k < n; k++) { double <span class="searchmatch">factor</span> = matrix[k][i] / matrix[i][i]; for (<span class="searchmatch">int</span> j = i; j < n; j++) { matrix[k][j] -= <span class="searchmatch">factor</span> * matrix[i][j];...
for (<span class="searchmatch">int</span> j = 0; j <= n; ++j) { A[i][j] /= pivot; } // Nullázás az oszlop többi helyén for (<span class="searchmatch">int</span> k = 0; k < n; ++k) { if (k != i) { double <span class="searchmatch">factor</span> = A[k][i];...
the pivot column <span class="searchmatch">in</span> other rows for i <span class="searchmatch">in</span> range(tableau.shape[0]): if i != pivot_row: <span class="searchmatch">factor</span> = tableau[i, pivot_col] tableau[i] -= <span class="searchmatch">factor</span> * tableau[pivot_row]...
ai_norm += A[i][j] * A[i][j]; } double <span class="searchmatch">factor</span> = (b[i] - ai_dot_x) / ai_norm; for (<span class="searchmatch">int</span> j = 0; j < n; ++j) { x[j] += <span class="searchmatch">factor</span> * A[i][j]; } } // Ellenőrizzük a konvergenciát...
++ii) { if(ii != i) { double <span class="searchmatch">factor</span> = A[ii][j]; for(<span class="searchmatch">int</span> k=0; k<m+n; ++k) { A[ii][k] -= <span class="searchmatch">factor</span> * A[i][k]; } b[ii] -= <span class="searchmatch">factor</span> * b[i]; } } // Célfüggvény sor...