net/web2/biomates */ draw2d( title = "All critical orbits for f(z)=z^5 +(0.8+0.8*i)*z^4 + z", terminal = png, user_preamble = "set size square", /* 360/26=13...
net/web2/biomates */ draw2d( title = concat("Critical orbit for f(z)=z^2 +", string(c)), terminal = png, user_preamble = "set size square; set key left...
net/web2/biomates */ draw2d( title = concat("Critical orbit for f(z)=z^2 +", string(c)), terminal = png, user_preamble = "set size square", /* */ file_name...
concat("Critical orbit for f(z)=z^2 +", string(c)), terminal = png, user_preamble = "set size square", /* */ file_name = concat(path ,string(iLength),"_8")...
BY-SA 3.0 Creative Commons Attribution-Share Alike 3.0 truetrue /* Computes and draw : - period 7 indifferent orbit z: z=f^n(z) - critical orbit - center...
z f = 1 / 4 {\displaystyle z_{f}=1/4} ( here big blue dot) then compute/draw orbits: critical orbit ( images of critical point = forward iteration of...
two vertical segments from critical point z=0 towards it's two preimages : a(z) = f^-1(z) and b(z) = -a(z). So it is: [a(z), -a] each (sub)segment of...
block( [z,orbit], z:0, /* first point = critical point z:0+0*%i */ orbit:[z], for i:1 thru iMax step 1 do ( z:expand(f(z,c)), orbit:endcons(z,orbit)), return(orbit)...
English Parabolic critical orbit of rational function ( Blaschke fraction) f(z) = rho * z^2 * (z-3)/(1-3*z) where rho = -0.6170144002709304 +0.7869518599370003*%i...
bifurcation points): r0: external ray 0 goes from (+) infinity along critical orbit towards critical point z=0 ( horizontal segment). Here bifurcates...