10 Resultater fundet for "Fil:Critical_orbit_for_f(z)_=_z^15_-_z.png".

Fil:Critical orbit for f(z) = z^15 - z.png

net/web2/biomates */ draw2d( title = "All orbits of 14 critical points for f(z)=z^15 -z ", terminal = png, file_name = concat("~/",string(iLength),"b")...


Fil:Critical orbits for f(z)=z^4-iz.png

critical orbits for discrete map f(z)=",fs ," where m=e^{2*pi*i*3/4}= -i "), terminal = png, user_preamble = "set angles degrees; set grid polar 15;...


Fil:Parabolic orbits insidse upper main chessboard box for f(z) = z^2 +0.25.svg

z f = 1 / 4 {\displaystyle z_{f}=1/4} ( here big blue dot) then compute/draw orbits: critical orbit ( images of critical point = forward iteration of...


Fil:Dynamical plane with branched periodic external ray 0 for map f(z) = z*z + 0.35.png

points): r0: external ray 0 goes from (+) infinity along critical orbit towards critical point z=0 ( horizontal segment). Here bifurcates. segment r1 has...


Fil:Fatou sets for Blaschke fraction f(z) = rho * z^2 * (z-3) over (1-3z) with LCM and critical orbit.png

plane with Julia set for Blaschke fraction f(z) = rho * z^2 * (z-3)/(1-3z) MBD_LCM andl LCM only for parabolic basin and critical orbit of parabolic basin...


Fil:Dynamical plane with branched periodic external ray 0 for map f(z) = z*z + 0.35.svg

points): r0: external ray 0 goes from (+) infinity along critical orbit towards critical point z=0 ( horizontal segment). Here bifurcates. segment r1 has...


Fil:Fatou sets for Blaschke fraction f(z) = rho * z^2 * (z-3) over (1-3z).png

plane with Julia set for Blaschke fraction f(z) = rho * z^2 * (z-3)/(1-3z) LCM for all 3 basins and critical orbit of parabolic basin File basins.pgm saved...


Fil:Julia set for f(z) = z*z -0.6978381951224250+0.2793041341013660 ( components and attracting cycle).png

p_size, A); /* forward orbit of critical point */ for (i=1;i<i_Max ; ++i) { z = f(z); //if (cabs2(z - zp) < AR2) {break;} // if (cabs2(z - zp) < PixelWidth2)...


Fil:Julia set f(z)=1 over z3+z*(-3-3*I).png

complex double z = z0; printf("draw forward orbit \n"); PlotBigPoint(z, A); /* forward orbit of critical point */ for (i=1;i<iMax ; ++i) { z = f(z); fprintf...


Fil:Dynamical chessboards of Julia set f(z) = z*z*z*z + 0.472464424146544.png

because zp0 = zcr = 0 z = f(z); } return iColorOfUnknown; } /* attracting petals ( gray curves) take 2 points: last point of critical orbit and fixed point...