9 Ergebnisse gefunden für "Datei:Cosine_fixed_point.svg".

Datei:Cosine fixed point.svg

iteration of the cosine function. Derived from [[:Image:Sine fixed point.svg]]. Created with [[Gnuplot]]: <nowiki> set term svg set out "cosine.svg" set multiplot...


Datei:Sine fixed point.svg

Fixed point iteration of the sine function. If using this as a starter for creating for iterative graphs, see Image:Cosine fixed point.svg for a superior...


Datei:Helicopter controllability. (IA helicoptercontro00cari).pdf

v )v + Y pPg - Y r SVg] g - (S L^Vg + n/)v - N^6 - [(N/S + N/)V E^)p - L^r = + I^ Pg ] N/p + + N/ Pg g (S (N/) g SVg] - N/)r = where...


Datei:A primer of quaternions (IA cu31924059551147).pdf

[Draw a fixed plane parallel to OQR the radii OA, OB, in the fixed points A', B', OP in the variable point P, and show that and that the fixed great circular...


Datei:Academ scale ratio cos 30deg.svg

  The SVG code is valid.   This /Baelde was created with a text editor. I, the copyright holder of this work, hereby publish it under the following license:...


Datei:Locally connected Julia set of a hyperbolic function in the complex cosine family.svg

DescriptionLocally connected Julia set of a hyperbolic function in the complex cosine family.svg English: This is a high-resolution version of Figure 2(c) from the...


Datei:Julia set of a hyperbolic function in the complex cosine family that has connected Fatou set.svg

DescriptionJulia set of a hyperbolic function in the complex cosine family that has connected Fatou set.svg English: This is a high-resolution raster version of...


Datei:Locally connected Julia set of a hyperbolic function in the complex cosine family with two attracting cycles.svg

connected Julia set of a hyperbolic function in the complex cosine family with two attracting cycles.svg English: This is a high-resolution version of Figure...


Datei:Diagrama de degraus.png

using vector graphics as an SVG file. This has several advantages; see Commons:Media for cleanup for more information. If an SVG form of this image is available...