grid lines*) f[r_, theta_] := r Sin[theta]; (*This is the function definition*) data = Table[ f[r, theta], {theta, 0, 2Pi, dtheta}, {r, 0, rmax, dr}];...
N); % mesh grid [Z, Theta] = meshgrid(ZZ, TTheta); % the curve we will revolve R = cos(Z)+2; X = R.*cos(Theta); Y = R.*sin(Theta); figure(2); clf; hold...
ParametricPlot3D[{r Cos[\[Theta]], r Sin[\[Theta]], 5 BesselJ[3, r] Sin[3 \[Theta]] Sin[\[Pi]/2]}, {r, 0, BesselJZero[3, 3]}, {\[Theta], 0, 2 \[Pi]}, PlotPoints ->...
YY=-L:h:L; [X, Y]=meshgrid(XX, YY); Z=f(X, Y); W = Z*0; Theta=0:h:2.2*pi; XC=r*cos(Theta); YC = r*sin(Theta); ZC = f(XC, YC); figure(1); clf; hold on; axis equal;...
for plotting % Get a grid R1=linspace(0.0, 1.0, N); Theta1=linspace(0.0, 2*pi, N); [R, Theta]=meshgrid(R1, Theta1); X=R.*cos(Theta); Y=R.*sin(Theta); T=linspace(0...
for plotting % Get a grid R1=linspace(0.0, 1.0, N); Theta1=linspace(0.0, 2*pi, N); [R, Theta]=meshgrid(R1, Theta1); X=R.*cos(Theta); Y=R.*sin(Theta); T=linspace(0...
for plotting % Get a grid R1=linspace(0.0, 1.0, N); Theta1=linspace(0.0, 2*pi, N); [R, Theta]=meshgrid(R1, Theta1); X=R.*cos(Theta); Y=R.*sin(Theta); T=linspace(0...
for plotting % Get a grid R1=linspace(0.0, 1.0, N); Theta1=linspace(0.0, 2*pi, N); [R, Theta]=meshgrid(R1, Theta1); X=R.*cos(Theta); Y=R.*sin(Theta); T=linspace(0...
for plotting % Get a grid R1=linspace(0.0, 1.0, N); Theta1=linspace(0.0, 2*pi, N); [R, Theta]=meshgrid(R1, Theta1); X=R.*cos(Theta); Y=R.*sin(Theta); T=linspace(0...
for plotting % Get a grid R1=linspace(0.0, 1.0, N); Theta1=linspace(0.0, 2*pi, N); [R, Theta]=meshgrid(R1, Theta1); X=R.*cos(Theta); Y=R.*sin(Theta); T=linspace(0...