10 Results found for "Dosya:Parabolic_Julia_set_for_internal_angle_1_over_15.png".

Dosya:Parabolic Julia set for internal angle 1 over 15.png

local dynamic ) This c program can draw parabolic Julia sets for internal angle ( rotation number) from 1/2 to 1/15. One has only to change value of iPeriodChild...


Dosya:Parabolic Julia set for internal angle 1 over 7.png

fraktal.republika.pl c console progam using * symmetry * openMP draw parabolic Julia set and saves it to pgm file period TurnOffset 5 0.17298227404701 6 0...


Dosya:Parabolic Julia set for internal angle 1 over 5 - new method.png

filled Julia set iter =GiveLastIteration(Zx, Zy ); if (iter< iterMax ) // point escapes { color = 245; } // exterior else // Filled Julia Set Second step...


Dosya:Parabolic Julia set for internal angle 1 over 7 with flower trap and critical orbit.png

fraktal.republika.pl c console progam using * symmetry * openMP draw parabolic Julia set and saves it to pgm file gcc t.c -lm -Wall -fopenmp -march=native...


Dosya:Dynamic plane for parabolic parameter from period 2 thru internal angle 1 over 2.png

Only Julia set from period 1 to cusp A parabolic checkerboard for rotation number 1 over 2 I, the copyright holder of this work, hereby publish it under...


Dosya:Parabolic Julia set from period 5 thru internal angle 1 over 3.png

hyperbolic component of Mandelbrot set // #include <complex.h> // turn is an internal angle in turns // 0.0 <= radius <=1.0 double complex GiveC(int period...


Dosya:Parabolic sepals for internal angle 1 over 1.png

filled Julia set From decomposition to checkerboard Parabolic orbits insidse upper main chessboard box Visualisation of Siegel disk I, the copyright holder...


Dosya:Interior of the Cauliflower Julia set.png

wikimedia.org/wiki/File:Quadratic_Julia_set_with_Internal_tile_for_internal_ray_0.ogv ----------------------------------------- 1.ppm file code is based on the...


Dosya:External rays and critical orbit landing on the parabolic fixed point for t=5 over 11.png

English External rays and critical orbit landing on the parabolic fixed point for internal angle t=5 /11 author name string: Soul windsurfer Wikimedia username:...


Dosya:Dynamical chessboards of Blaschke product f(z) = (z^d + a) over (1 + a*z^d) with a = (d - 1) over ( d + 1) for d = 4.png

org/pdf/1510.00043v2.pdf Parabolic and near-parabolic renormalizations for local degree three by Fei Yang B3 is a Blaschke product whose Julia set is the unit circle...