10 Results found for "Dosya:Mandelbrot_set_-_multiplier_map.png".

Dosya:Mandelbrot set - multiplier map.png

boundary abs(multiplier (c)) = 1.0 +- eps DEM/M /* Multiplier map https://en.wikibooks.org/wiki/Fractals/Iterations_in_the_complex_plane/Mandelbrot_set...


Dosya:Mandelbrot set Components.jpg

components of Mandelbrot sets are closed curves : cardioids or circles. Douady-Hubbard-Sullivan theorem (DHS) states that unit circle can be mapped to boundary...


Dosya:Iray.png

Mandelbrot set - multiplier map, internal rays , internal coordinate Coordinates of point w {\displaystyle w\,} in exponential form are : w = r ∗ e 2...


Dosya:Circle2cardioid.png

boundary or period=1 hyperbolic component of Mandelbrot set g 1 {\displaystyle g_{1}\,} is a complex map from circle to cardioid g 1 : ∂ D 1 2 → ∂ H 1...


Dosya:Part of parameter plane with external 3 rays landing on the Mandelbrot set.png

algorithms are described in the book : "How To Write A Book About The Mandelbrot Set" by Claude Heiland-Allen Wolf Jung descibes the test for drawing external...


Dosya:Parameter plane and Mandelbrot set for f(z) = z^4 + m*z.png

rotate crop /* c program: 1. draws Mandelbrot set for Fm(z)=z^4+m*z; using escape time ( boolean and levele sets ) Adam Majewski fraktal.republka.pl...


Dosya:Multiplier4 f.png

abs(multiplier(z)) */ return(stability) ); stability_alfa(_c):= block( alfa:(1-sqrt(abs(1-4*_c)))/2, stability:abs(float(2*alfa)), /* abs(multiplier(z))...


Dosya:Jung50e.png

Jungreis function Uniformisation of the interior of Mandelbrot set components using multiplier map: internal rays , internal coordinate // https://gist...


Dosya:Cr6spiral3d.png

attracting fixed point zf with abs(multiplier(zf)=0.99993612384259 . Point c is near root of period 6 component of Mandelbrot set. Wikimedia username: Adam majewski...


Dosya:Cr6spiral.png

attracting fixed point zf with abs(multiplier(zf)=0.99993612384259 . Point c is near root of period 6 component of Mandelbrot set. URL: https://commons.wikimedia...