10 Results found for "Dosya:Parabolic_Julia_set_for_internal_angle_1_over_7.png".

Dosya:Parabolic Julia set for internal angle 1 over 7.png

using * symmetry * openMP draw parabolic Julia set and saves it to pgm file period TurnOffset 5 0.17298227404701 6 0.04 7 0.092 gcc t.c -lm -Wall -fopenmp...


Dosya:Parabolic Julia set for internal angle 1 over 15.png

local dynamic ) This c program can draw parabolic Julia sets for internal angle ( rotation number) from 1/2 to 1/15. One has only to change value of iPeriodChild...


Dosya:Parabolic Julia set for internal angle 1 over 5.png

openMP It uses modified DEM method (different from Milnor's) to draw parabolic julia sets gcc t.c -lm -Wall -fopenmp -march=native time ./a.out File s1000000f1...


Dosya:Parabolic Julia set for internal angle 1 over 20.png

function) and 42 text files ( for info and debug) Numerical approximation of parabolic Julia set for fc(z)= z^2 + c iPeriodParent = 1 iPeriodOfChild = 20 parameter...


Dosya:Parabolic Julia set for internal angle 1 over 7 with flower trap and critical orbit.png

fraktal.republika.pl c console progam using * symmetry * openMP draw parabolic Julia set and saves it to pgm file gcc t.c -lm -Wall -fopenmp -march=native...


Dosya:Parabolic Julia set for internal angle 1 over 3.png

---------------------*/ free(data); free(edge); return 0; } English Parabolic Julia set for internal angle 1/3 = fat Douady rabbit URL: https://commons.wikimedia...


Dosya:Parabolic chessboard for internal angle 1 over 3.png

https://gitlab.com/adammajewski/parabolic_chesboard_using_triangle_in_c c console progam using * symmetry * openMP draw julia sets gcc i.c -lm -Wall -fopenmp...


Dosya:Parabolic sepals for internal angle 1 over 1.png

filled Julia set From decomposition to checkerboard Parabolic orbits insidse upper main chessboard box Visualisation of Siegel disk I, the copyright holder...


Dosya:External rays and critical orbit landing on the parabolic fixed point for t=5 over 11.png

English External rays and critical orbit landing on the parabolic fixed point for internal angle t=5 /11 author name string: Soul windsurfer Wikimedia username:...


Dosya:Dynamical chessboards of Blaschke product f(z) = (z^d + a) over (1 + a*z^d) with a = (d - 1) over ( d + 1) for d = 5.png

org/pdf/1510.00043v2.pdf Parabolic and near-parabolic renormalizations for local degree three by Fei Yang B3 is a Blaschke product whose Julia set is the unit circle...