The suffix -yllion is a proposal from Donald Knuth for the terminology and symbols of an alternate decimal superbase system. In it, he adapts the familiar English terms for large numbers to provide a systematic set of names for much larger numbers. In addition to providing an extended range, -yllion also dodges the long and short scale ambiguity of -illion.
Knuth's digit grouping is exponential instead of linear; each division doubles the number of digits, whereas the familiar system only adds three or six more. His system is basically the same as one of the ancient and now-unused Chinese numeral systems, in which units stand for 104, 108, 1016, 1032, and so on.
For a more extensive table, see Myriad system.
Value | Name | Notation |
---|---|---|
100 | One | 1 |
101 | Ten | 10 |
102 | Hundred | 100 |
103 | Ten hundred | 1000 |
104 | Myriad | 1,0000 |
105 | Ten myriad | 10,0000 |
106 | Hundred myriad | 100,0000 |
107 | Ten hundred myriad | 1000,0000 |
108 | Myllion | 1;0000,0000 |
1012 | Myriad myllion | 1,0000;0000,0000 |
1016 | Byllion | 1:0000,0000;0000,0000 |
1024 | Myllion byllion | 1;0000,0000:0000,0000;0000,0000 |
1032 | Tryllion | 1 0000,0000;0000,0000:0000,0000;0000,0000 |
1064 | Quadryllion | 1'0000,0000;0000,0000:0000,0000;0000,0000 0000,0000;0000,0000:0000,0000;0000,0000 |
10128 | Quintyllion | 1 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 |
10256 | Sextyllion | 1 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 |
In Knuth's -yllion proposal:
Each new number name is the square of the previous one — therefore, each new name covers twice as many digits. Knuth continues borrowing the traditional names changing "illion" to "yllion" on each one. Abstractly, then, "one n-yllion" is . "One trigintyllion" () would have nearly forty-three myllion (4300 million) digits. (By contrast, a conventional "trigintillion" has merely 94 digits — not even a hundred, let alone a hundred million!)