Russell's paradox

Hello, you have come here looking for the meaning of the word Russell's paradox. In DICTIOUS you will not only get to know all the dictionary meanings for the word Russell's paradox, but we will also tell you about its etymology, its characteristics and you will know how to say Russell's paradox in singular and plural. Everything you need to know about the word Russell's paradox you have here. The definition of the word Russell's paradox will help you to be more precise and correct when speaking or writing your texts. Knowing the definition ofRussell's paradox, as well as those of other words, enriches your vocabulary and provides you with more and better linguistic resources.

English

English Wikipedia has an article on:
Wikipedia

Etymology

Named after English mathematician, logician and philosopher Bertrand Russell.

Proper noun

Russell's paradox

  1. (set theory) The paradox that a set defined to contain all sets which do not contain themselves can neither consistently contain itself nor not contain itself.
    • 1999, R. C. Penner, Discrete Mathematics: Proof Techniques and Mathematical Structures, World Scientific, page 109:
      One concludes that there must be something fishy about the Axiom of Comprehension, and, over time, the replacement of the Axiom of Comprehension by the Schema of Separation was seen to resolve Russell's paradox. Indeed, one cannot apply the Schema of Separation as in Russell's paradox unless one knows in advance that the collection of all sets is itself a set.
    • 2001, M. Randall Holmes, “Tarski's Theorem and NFU”, in C. Anthony Anderson, Michael Zelëny, editors, Logic, Meaning and Computation: Essays in Memory of Alonzo Church, Springer (Kluwer Academic), page 469:
      The well-known theorem of Tarski that truth of sentences in any reasonably expressive language L cannot be defined in the language L itself is proved by a diagonalization argument similar to the argument involved in Russell's paradox. [] It is usual to think that Russell's paradox excludes "large" sets like the universe, but this is actually not the case. An alternate solution to Russell's paradox (and other paradoxes) was proposed by Quine (1937) in his system "New Foundations" (NF): comprehension restricted to stratified formulae.
    • 2013, Greg Frost-Arnold, Carnap, Tarski, and Quine at Harvard: Conversations on Logic, Mathematics, and Science, Carus Publishing Company (Open Court), page 43,
      Roughly, the idea is that Russell's paradox reveals that certain logics suffer serious problems, and therefore these logics should be avoided. Here again, Quine asserts that the real lesson of Russell's paradox is that we should give up quantifying over abstracta.

Usage notes

The paradox can be stated as follows:

  • Define .
  • Either (a) or (b) .
  • In case (a), ; in case (b), .

In the standard axiomatisation of set theory (ZFC), the paradox is avoided by disallowing the definition of sets with criteria of unrestricted comprehension.

Synonyms

Translations

See also

Further reading