composition algebra

Hello, you have come here looking for the meaning of the word composition algebra. In DICTIOUS you will not only get to know all the dictionary meanings for the word composition algebra, but we will also tell you about its etymology, its characteristics and you will know how to say composition algebra in singular and plural. Everything you need to know about the word composition algebra you have here. The definition of the word composition algebra will help you to be more precise and correct when speaking or writing your texts. Knowing the definition ofcomposition algebra, as well as those of other words, enriches your vocabulary and provides you with more and better linguistic resources.

English

English Wikipedia has an article on:
Wikipedia

Noun

composition algebra (plural composition algebras)

  1. (algebra) A non-associative (not necessarily associative) algebra, A, over some field, together with a nondegenerate quadratic form, N, such that N(xy) = N(x)N(y) for all x, yA.
    • 1993, F. L. Zak (translator and original author), Simeon Ivanov (editor), Tangents and Secants of Algebraic Varieties, American Mathematical Society, page 11,
      More precisely, is a Severi variety if and only if , where is the Jordan algebra of Hermitian (3 × 3)-matrices over a composition algebra , and corresponds to the cone of Hermitian matrices of rank (in that case corresponds to the cone of Hermitian matrices with vanishing determinant; cf. Theorem 4.8). In other words, is a Severi variety if and only if is the “Veronese surface” over one of the composition algebras over the field (Theorem 4.9).
    • 1998, Max-Albert Knus, Alexander Merkurjev, Markus Rost, Jean-Pierre Tignol, The Book of Involutions, American Mathematical Society, page 464:
      We call a composition algebra with an associative norm a symmetric composition algebra and denote the full subcategory of consisting of symmetric composition algebras by .
    • 2006, Alberto Elduque, Chapter 12: A new look at Freudenthal's Magic Square, Lev Sabinin, Larissa Sbitneva, Ivan Shestakov (editors, Non-Associative Algebra and Its Applications, Taylor & Francis Group (Chapman & Hall/CRC), page 150,
      At least in the split cases, this is a construction that depends on two unital composition algebras, since the Jordan algebra involved consists of the 3 x 3-hermitian matrices over a unital composition algebra.

Usage notes

  • Formally, a tuple, , where is a nonassociative algebra, the mapping is an involution, called a conjugation, and is the quadratic form , called the norm of the algebra.
  • A composition algebra may be:
    1. A split algebra if there exists some (called a null vector). In this case, is called an isotropic quadratic form and the algebra is said to split.
    2. A division algebra otherwise; so named because division, except by 0, is possible: the multiplicative inverse of is . In this case, is an anisotropic quadratic form.

Hypernyms

Hyponyms

Translations

Further reading