<span class="searchmatch">forgetful</span> <span class="searchmatch">functors</span> plural of <span class="searchmatch">forgetful</span> <span class="searchmatch">functor</span>...
Wikipedia has an article on: <span class="searchmatch">forgetful</span> <span class="searchmatch">functor</span> Wikipedia <span class="searchmatch">forgetful</span> <span class="searchmatch">functor</span> (plural <span class="searchmatch">forgetful</span> <span class="searchmatch">functors</span>) (category theory) a <span class="searchmatch">functor</span> that forgets or drops some...
properties before producing an output. a <span class="searchmatch">forgetful</span> mapping; a <span class="searchmatch">forgetful</span> <span class="searchmatch">functor</span> <span class="searchmatch">forgetful</span> <span class="searchmatch">functor</span> <span class="searchmatch">forgetfully</span> <span class="searchmatch">forgetfulness</span> unforgetful liable to forget...
underlying <span class="searchmatch">functor</span> (plural underlying <span class="searchmatch">functors</span>) (category theory) a <span class="searchmatch">forgetful</span> <span class="searchmatch">functor</span> 1995, Michael Barr with Charles Wells, Category Theory for Computing...
categories and the morphisms are <span class="searchmatch">functors</span>. 1991, Natalie Wadhwa (translator), Yu. A. Brudnyǐ, N. Ya. Krugljak, Interpolation <span class="searchmatch">Functors</span> and Interpolation Spaces...
yoneda embeddings in K {\displaystyle {\mathcal {K}}} lift along these <span class="searchmatch">forgetful</span> <span class="searchmatch">functors</span>, as well as ensuring that such lifted algebraic yoneda embeddings...
varpi (“exact <span class="searchmatch">functor</span>”) gleymskuvarpi (“<span class="searchmatch">forgetful</span> <span class="searchmatch">functor</span>”) hálffleygaður varpi (“half-exact <span class="searchmatch">functor</span>”) hjávarpi (“contravariant <span class="searchmatch">functor</span>”) meðbrigðinn...
S e t {\displaystyle \mathbf {Set} } (or any category that has a <span class="searchmatch">forgetful</span> <span class="searchmatch">functor</span> to S e t {\displaystyle \mathbf {Set} } ). Function i is an injection...