Warning: Undefined variable $resultados in /home/enciclo/public_html/dictious.com/search.php on line 17
ring_of_fractions - Dictious

10 Results found for " ring_of_fractions"

ring of fractions

<span class="searchmatch">ring</span> <span class="searchmatch">of</span> <span class="searchmatch">fractions</span> (plural <span class="searchmatch">rings</span> <span class="searchmatch">of</span> <span class="searchmatch">fractions</span>) (algebra) A <span class="searchmatch">ring</span> whose elements are <span class="searchmatch">fractions</span> whose numerators belong to a given commutative unital ring...


total ring of fractions

on: total <span class="searchmatch">ring</span> <span class="searchmatch">of</span> <span class="searchmatch">fractions</span> Wikipedia total <span class="searchmatch">ring</span> <span class="searchmatch">of</span> <span class="searchmatch">fractions</span> (plural total <span class="searchmatch">rings</span> <span class="searchmatch">of</span> <span class="searchmatch">fractions</span>) (algebra) A <span class="searchmatch">ring</span> <span class="searchmatch">of</span> <span class="searchmatch">fractions</span> <span class="searchmatch">of</span> a given <span class="searchmatch">ring</span>, such that...


rings of fractions

<span class="searchmatch">rings</span> <span class="searchmatch">of</span> <span class="searchmatch">fractions</span> plural <span class="searchmatch">of</span> <span class="searchmatch">ring</span> <span class="searchmatch">of</span> <span class="searchmatch">fractions</span>...


field of fractions

on: field <span class="searchmatch">of</span> <span class="searchmatch">fractions</span> Wikipedia field <span class="searchmatch">of</span> <span class="searchmatch">fractions</span> (plural fields <span class="searchmatch">of</span> <span class="searchmatch">fractions</span>) (algebra, <span class="searchmatch">ring</span> theory) The smallest field in which a given <span class="searchmatch">ring</span> can be embedded...


valuation ring

valuation <span class="searchmatch">ring</span> Wikipedia valuation <span class="searchmatch">ring</span> (plural valuation <span class="searchmatch">rings</span>) (algebra) An integral domain D such that for every element x <span class="searchmatch">of</span> its field <span class="searchmatch">of</span> <span class="searchmatch">fractions</span> F, at...


ring

authenticity <span class="searchmatch">ring</span> <span class="searchmatch">of</span> bells <span class="searchmatch">ring</span> <span class="searchmatch">of</span> death <span class="searchmatch">Ring</span> <span class="searchmatch">of</span> Fire <span class="searchmatch">ring</span> <span class="searchmatch">of</span> <span class="searchmatch">fractions</span> <span class="searchmatch">Ring</span> <span class="searchmatch">of</span> Solomon <span class="searchmatch">ring</span> <span class="searchmatch">of</span> steel <span class="searchmatch">ring</span> <span class="searchmatch">of</span> the fisherman <span class="searchmatch">ring</span> <span class="searchmatch">of</span> truth <span class="searchmatch">ring</span> oscillator <span class="searchmatch">ring</span> ouzel...


fraction

(transitive) To divide or break into <span class="searchmatch">fractions</span>. (transitive) To fractionate. to divide into <span class="searchmatch">fractions</span> “<span class="searchmatch">fraction</span>”, in Dictionary.com Unabridged, Dictionary...


ring-dropping

<span class="searchmatch">ring</span>-dropping (uncountable) (historical) A form <span class="searchmatch">of</span> fraud in which a <span class="searchmatch">ring</span> or other spurious article is supposed to be found just in front <span class="searchmatch">of</span> the mark,...


idealizer

idealizes. (algebra) For a <span class="searchmatch">ring</span> R and an ideal m <span class="searchmatch">of</span> R, the set <span class="searchmatch">of</span> all u ∈ Frac(R) such that um ⊂ m, where Frac(R) is the <span class="searchmatch">fraction</span> field <span class="searchmatch">of</span> R. algebraic structure...


integral domain

polynomial <span class="searchmatch">ring</span> R [ x ] {\displaystyle R[x]} is an integral domain. For any integral domain there can be derived an associated field <span class="searchmatch">of</span> <span class="searchmatch">fractions</span>. 1990, Barbara...