spherical geometry

Hello, you have come here looking for the meaning of the word spherical geometry. In DICTIOUS you will not only get to know all the dictionary meanings for the word spherical geometry, but we will also tell you about its etymology, its characteristics and you will know how to say spherical geometry in singular and plural. Everything you need to know about the word spherical geometry you have here. The definition of the word spherical geometry will help you to be more precise and correct when speaking or writing your texts. Knowing the definition ofspherical geometry, as well as those of other words, enriches your vocabulary and provides you with more and better linguistic resources.

English

English Wikipedia has an article on:
Wikipedia

Noun

spherical geometry (usually uncountable, plural spherical geometries)

  1. (geometry, uncountable) The geometry of the 2-dimensional surface of a sphere;
    (countable) a given geometry of the surface of a sphere; a geometry of the surface of a given sphere, regarded as distinct from that of other spheres.
    The basic concepts of Euclidean geometry of the plane are the point and the (straight) line; in spherical geometry, the corresponding concepts are the point and the great circle.
    Due to the way the geometry of a sphere's surface differs from that of the plane, spherical geometry has some features of a non-Euclidean geometry and is sometimes described as being one. Historically, however, spherical geometry was not considered a fully fledged (non-Euclidean) geometry capable of resolving the question of whether the parallel postulate is a logical consequence of the rest of Euclid's axioms of plane geometry.
    • 1972, Morris Kline, Mathematical Thought from Ancient to Modern Times: Volume 1, Oxford University Press, 1990, paperback, page 119,
      Spherical trigonometry presupposes spherical geometry, for example the properties of great circles and spherical triangles, much of which was already known; it had been investigated as soon as astronomy became mathematical, during the time of the later Pythagoreans.
    • 1994, Viacheslav V. Nikulin, Igor R. Shafarevich, translated by Miles Reid, Geometries and Groups, Springer, page 194:
      We start with spherical geometries. The two geometries on spheres of radiuses R1 and R2 are obviously identical if R1 = R2; moreover, the converse also holds.
    • 2008, Sherif Ghali, Introduction to Geometric Computing, Springer, page 272:
      To collect the boundary of the point set in the tree we pass a bounding box (for Euclidean geometries) or the universal set (for spherical geometries) to the root of the tree.
    • 2020, Marshall A. Whittlesey, Spherical Geometry and Its Applications, Taylor & Francis (CRC Press), unnumbered page,
      It has been at least fifty years since spherical geometry and spherical trigonometry have been a regular part of the high school or undergraduate curriculum.

Translations

See also

Further reading