10 Tuloksia löytyi "Tiedosto:Hyperbolic_Cosine.svg".

Tiedosto:Hyperbolic Cosine.svg

DescriptionHyperbolic Cosine.svg English: Hyperbolic Cosine function plot cosh(x) = (e^x + e^-x) / 2 Plotted with cubic bezier-curves. The bezier-controll-points...


Tiedosto:Sinh+cosh+tanh.svg

Sinh cosh.svg Hyperbolic Sine.svg Hyperbolic Cosine.svg Hyperbolic Tangent.svg I, the copyright holder of this work, hereby publish it under the following...


Tiedosto:Sinh cosh.svg

Hyperbolic Sine.svg Hyperbolic Cosine.svg Sinh cosh tanh.svg I, the copyright holder of this work, hereby publish it under the following licenses: This...


Tiedosto:Sinh cosh tanh.svg

2006-03-14 10:22 Ktims 1600×1200×0 (8934 bytes) The hyperbolic sine (red), hyperbolic cosine (green) and hyperbolic tangent (blue) graphed on the same axes. 2006-03-14...


Tiedosto:Sinh cosh tanh-lv.svg

(8934 Bytes) {{Information |Description=The hyperbolic sine (red), hyperbolic cosine (green) and hyperbolic tangent (blue) graphed on the same axes. Replaces...


Tiedosto:Inverse Hyperbolic Cosine.svg

DescriptionInverse Hyperbolic Cosine.svg English: Inverse Hyperbolic Cosine function plot (Arc hyperbolic cosine, arccosh) arcosh(x) = ln(x + sqrt(x^2...


Tiedosto:The cardinal hyperbolic cosine function coshc(z) plotted in the complex plane from -2-2i to 2+2i.svg

Commons Attribution-Share Alike 4.0 truetrue English The cardinal hyperbolic cosine function coshc(z) plotted in the complex plane from -2-2i to 2+2i...


Tiedosto:The hyperbolic cosine function cosh(z) plotted in the complex plane from -2-2i to 2+2i.svg

Creative Commons Attribution-Share Alike 4.0 truetrue English The hyperbolic cosine function cosh(z) plotted in the complex plane from -2-2i to 2+2i author...


Tiedosto:Mathematik für Anwender (Osnabrück 2019-2020)Teil IVorlesung13.pdf

CC-by-sa 3.0 2 Quelle = Hyperbolic Tangent.svg , Autor = Benutzer Geek3 auf Commons, Lizenz = CC-by-sa 3.0 2 Quelle = Disk 1.svg , Autor = Benutzer Paris...


Tiedosto:Mathematik für Anwender (Osnabrück 2020-2021)Teil IVorlesung13.pdf

CC-by-sa 3.0 2 Quelle = Hyperbolic Tangent.svg , Autor = Benutzer Geek3 auf Commons, Lizenz = CC-by-sa 3.0 3 Quelle = Disk 1.svg , Autor = Benutzer Paris...