10 Tuloksia löytyi "Tiedosto:Pythagorean_pairs.svg".

Tiedosto:Pythagorean pairs.svg

truetrue English Pythagorean pairs presented as a succession of the generations 1 to generation 4 of the related primitive [[:en:Pythagorean triple|]]s as...


Tiedosto:Proof-Pythagorean-Theorem.svg

Diagram describing a proof of the Pythagorean theorem; drawn with w:MetaPost and converted to w:SVG. See also Image:Pythagoras6.png for another diagram...


Tiedosto:High School Geometry Teacher's Guide.pdf

svg Students can see how directions such as SWS, NNW, etc bisect the traditional four-corner directions. Angle Pairs Pacing: This lesson...


Tiedosto:Countless squares - an example of Pythagorean tiling.svg

DescriptionCountless squares - an example of Pythagorean tiling.svg English: Five drawings of tilings are overlaid.  Out of the five, three tilings are similar...


Tiedosto:Pythagorean triple scatterplot.svg

DescriptionPythagorean triple scatterplot.svg The Pythagorean triples up to 4500. A total of 11730 value pairs. Date 17 October 2007 Source Own work Author...


Tiedosto:Comparison Pythagorean means.svg

DescriptionComparison Pythagorean means.svg English: Comparison of the arithmetic, geometric and harmonic means of a pair of numbers. The vertical dashed...


Tiedosto:A pattern Two explanatory grids.svg

where two Pythagorean tilings are overlaid, some arrows depict two pairs of translations that transform one or the other tiling into itself.  Each pair generates...


Tiedosto:Academ Translations depicted on a wallpaper.svg

Translations depicted on a wallpaper.svg English: Two drawings of similar tilings are overlaid.  An article calls "Pythagorean tiling" such a periodic tiling...


Tiedosto:"Really square".svg

Description"Really square".svg English: An article on Wikipedia calls "Pythagorean tiling" a periodic tiling by squares of two different sizes, where...


Tiedosto:Academ Two similar patterns are overlaid.svg

similar patterns are overlaid.svg English: Two drawings of similar tilings are overlaid.  An article calls "Pythagorean tiling" such a periodic tiling...