DescriptionFS CS dia.png English: Largest hexagon in a circle Deutsch: Größtes Sechseck in einem Kreis Date 22 June 2022 Source Own work Author Hans G...
{S_{0}F}}+{\overrightarrow {FS_{4}}}} ⇔ S 4 = S 0 F → + F S 4 → {\displaystyle \Leftrightarrow S_{4}={\overrightarrow {S_{0}F}}+{\overrightarrow {FS_{4}}}\quad } ,...
{S_{0}F}}+{\overrightarrow {FS_{4}}}} ⇔ S 4 = S 0 F → + F S 4 → {\displaystyle \Leftrightarrow S_{4}={\overrightarrow {S_{0}F}}+{\overrightarrow {FS_{4}}}\quad } ,...
equilateral triangle (3) | D S | + | C S | = | C D | {\displaystyle |DS|+|CS|=|CD|\quad } , since the inscribed triangle △ A B C {\displaystyle \triangle...
{\displaystyle |GC|} the right triangle △ C S 0 F {\displaystyle \triangle {CS_{0}F}} is used: | S 0 F | | G C | + | S 0 G | = sin γ {\displaystyle {\frac...
| A S 0 | = | B S 0 | = | C S 0 | = r 0 {\displaystyle |AS_{0}|=|BS_{0}|=|CS_{0}|=r_{0}} The points A {\displaystyle A} , B {\displaystyle B} and C {\displaystyle...
E S 0 | = | F S 0 | = a 0 {\displaystyle |AS_{0}|=|BS_{0}|=|CS_{0}|=|DS_{0}|=|ES_{0}|=|FS_{0}|=a_{0}} So the diameter between two corners is | A D | =...
S 0 | = | C D | {\displaystyle |DS_{0}|+|CS_{0}|=|CD|} (4) | B S | = | C S 0 | = r 0 {\displaystyle |BS|=|CS_{0}|=r_{0}} (5) | C D | 2 + | B D | 2 = |...
{CS_{1}}}} ⇔ S 1 = ( 0 + 0 i ) + S 0 C → + C S 1 ← {\displaystyle \quad \Leftrightarrow S_{1}=(0+0i)+{\overrightarrow {S_{0}C}}+{\overleftarrow {CS_{1}}}}...
|DB|=|DF|=|DC|=|DS_{1}|+|CS_{1}|=r_{0}} | D S 1 | = | H S 1 | = | C S 1 | = r 1 = 1 2 r 0 {\displaystyle \quad |DS_{1}|=|HS_{1}|=|CS_{1}|=r_{1}={\frac {1}{2}}r_{0}}...