8 "Ficheiro:Parabolic_chessboard_for_internal_angle_1_over_3.png".

Ficheiro:Parabolic chessboard for internal angle 1 over 3.png

InternalAngleInTurns, double InternalRadius, unsigned int Period) { //0 <= InternalRay<= 1 //0 <= InternalAngleInTurns <=1 double t = InternalAngleInTurns...


Ficheiro:Parabolic chessboard for internal angle 1 over 3 with target set.png

Commons Attribution-Share Alike 4.0 truetrue English Parabolic chessboard for internal angle 1 over 3 with target set author name string: Soul windsurfer...


Ficheiro:Parabolic sepals for internal angle 1 over 1.png

filled Julia set From decomposition to checkerboard Parabolic orbits insidse upper main chessboard box Visualisation of Siegel disk I, the copyright holder...


Ficheiro:Dynamical chessboards of Blaschke product f(z) = (z^d + a) over (1 + a*z^d) with a = (d - 1) over ( d + 1) for d = 3.png

iColorOfInterior1 = 250; unsigned char iColorOfExterior = 225; // for parabolic chessboards unsigned char colorArray[2][2]={{255,231}, {123,99}}; /* shades...


Ficheiro:Dynamical chessboards of Blaschke product f(z) = (z^d + a) over (1 + a*z^d) with a = (d - 1) over ( d + 1) for d = 4.png

iColorOfInterior1 = 250; unsigned char iColorOfExterior = 225; // for parabolic chessboards unsigned char colorArray[2][2]={{255,231}, {123,99}}; /* shades...


Ficheiro:Dynamical chessboards of Blaschke product f(z) = (z^d + a) over (1 + a*z^d) with a = (d - 1) over ( d + 1) for d = 5.png

iColorOfInterior1 = 250; unsigned char iColorOfExterior = 225; // for parabolic chessboards unsigned char colorArray[2][2]={{255,231}, {123,99}}; /* shades...


Ficheiro:Dynamical chessboards of Blaschke product f(z) = (z^d + a) over (1 + a*z^d) with a = (d - 1) over ( d + 1) for d = 2.png

iColorOfInterior1 = 250; unsigned char iColorOfExterior = 225; // for parabolic chessboards unsigned char colorArray[2][2]={{255,231}, {123,99}}; /* shades...


Ficheiro:Parabolic orbits insidse upper main chessboard box for f(z) = z^2 +0.25.svg

sconcat(path,"tt", string(jMax)), title= "Parabolic dynamics for f(z) = z^2 +1/4 inside upper main chessboard box", /* only upper box */ dimensions = [1000...