8 "Fișier:Quadratic_Julia_set_with_Internal_tile_for_internal_ray_0.ogv".

Fișier:Quadratic Julia set with Internal tile for internal ray 0.ogv

target set is changing along intranl ray 0 Binary decomposition of interior of filled Julia set Internal level sets This video shows dynamical planes for complex...


Fișier:Quadratic Julia set with Internal level sets for internal ray 0.ogv

target set is changing along intrnal ray 0 Binary decomposition of interior of filled Julia set Full tile = binary decomposition and internal level sets This...


Fișier:Quadratic Julia set with Internal binary decomposition for internal ray 0.ogv

for other internal rays) not disc ( parabolic case ) How the target set is changing along an internal ray 0 Internal level sets Full tile = binary decomposition...


Fișier:Parabolic Julia set for internal angle 1 over 30 with target set.png

approximation of parabolic Julia set for complex quadratic polynomial fc(z)= z^2 + c parameter c = 0.2606874359562527 , 0.0022716846399296 c is a root...


Fișier:Parabolic Julia set for internal angle 1 over 30.png

approximation of parabolic Julia set for complex quadratic polynomial fc(z)= z^2 + c parameter c = 0.2606874359562527 , 0.0022716846399296 c is a root...


Fișier:Interior of the Cauliflower Julia set.png

https://commons.wikimedia.org/wiki/File:Quadratic_Julia_set_with_Internal_tile_for_internal_ray_0.ogv ----------------------------------------- 1.ppm file code...


Fișier:Target set for internal ray 0.ogv

ZAy*i */ /* */ const double EscapeRadius=2.0; /* radius of circle around origin; its complement is a target set for escaping points */ double ER2=EscapeRadius*EscapeRadius;...


Fișier:Parabolic rays landing on fixed point.ogv

This video is related with discrete dynamical system based on complex quadratic polynomial : f c = z 2 + c {\displaystyle f_{c}=z^{2}+c} This video consist...