(“hop”). <span class="searchmatch">Hopf</span> (plural <span class="searchmatch">Hopfs</span>) A surname. <span class="searchmatch">Hopf</span> algebra <span class="searchmatch">Hopf</span> bifurcation <span class="searchmatch">Hopf</span> bundle <span class="searchmatch">Hopf</span> fibration Hopfian <span class="searchmatch">Hopf</span> invariant <span class="searchmatch">Hopf</span> link <span class="searchmatch">Hopf</span> map <span class="searchmatch">Hopf</span> number H-space...
on: <span class="searchmatch">Hopf</span> link Wikipedia Wikimedia Commons has media related to: <span class="searchmatch">Hopf</span> links From <span class="searchmatch">Hopf</span> + link. From being an interlinkage named after Heinz <span class="searchmatch">Hopf</span>. <span class="searchmatch">Hopf</span> link...
<span class="searchmatch">Hopf</span> links plural of <span class="searchmatch">Hopf</span> link...
<span class="searchmatch">Hopf</span> algebras plural of <span class="searchmatch">Hopf</span> algebra...
Named after Heinz <span class="searchmatch">Hopf</span>. <span class="searchmatch">Hopf</span> algebra (plural <span class="searchmatch">Hopf</span> algebras) English Wikipedia has an article on: <span class="searchmatch">Hopf</span> algebra Wikipedia (mathematics) A structure that...
Wikipedia has an article on: Wiener-<span class="searchmatch">Hopf</span> method Wikipedia Developed by Norbert Wiener and Eberhard <span class="searchmatch">Hopf</span>. the Wiener-<span class="searchmatch">Hopf</span> method (mathematics) A technique...
Alain Bruguières, “<span class="searchmatch">Hopf</span> polyads”, in arXiv[1]: <span class="searchmatch">Hopf</span> categories in the sense of Batista, Caenepeel and Vercruysse can be viewed as <span class="searchmatch">Hopf</span> polyads in a braided...
From <span class="searchmatch">Hopf</span> + -ian. Hopfian (not comparable) (mathematics) Relating to, or introduced by, Heinz <span class="searchmatch">Hopf</span> (1894–1971), German mathematician. cohopfian Hopfian...
Bruguières, “<span class="searchmatch">Hopf</span> polyads”, in arXiv[1]: A polyad is a lax functor from a small category (its source) to the bicategory of categories, and a <span class="searchmatch">Hopf</span> polyad is...