Warning: Undefined variable $resultados in /home/enciclo/public_html/dictious.com/search.php on line 17
Hopf_algebra - Dictious

10 Results found for " Hopf_algebra"

Hopf algebra

Named after Heinz <span class="searchmatch">Hopf</span>. <span class="searchmatch">Hopf</span> <span class="searchmatch">algebra</span> (plural <span class="searchmatch">Hopf</span> <span class="searchmatch">algebras</span>) English Wikipedia has an article on: <span class="searchmatch">Hopf</span> <span class="searchmatch">algebra</span> Wikipedia (mathematics) A structure that...


Hopf algebras

<span class="searchmatch">Hopf</span> <span class="searchmatch">algebras</span> plural of <span class="searchmatch">Hopf</span> <span class="searchmatch">algebra</span>...


Hopf

(“hop”). <span class="searchmatch">Hopf</span> (plural <span class="searchmatch">Hopfs</span>) A surname. <span class="searchmatch">Hopf</span> <span class="searchmatch">algebra</span> <span class="searchmatch">Hopf</span> bifurcation <span class="searchmatch">Hopf</span> bundle <span class="searchmatch">Hopf</span> fibration Hopfian <span class="searchmatch">Hopf</span> invariant <span class="searchmatch">Hopf</span> link <span class="searchmatch">Hopf</span> map <span class="searchmatch">Hopf</span> number H-space...


counimodular

<span class="searchmatch">Hopf</span> <span class="searchmatch">algebra</span> that is unimodular. 2015, Tao Yang, “Drinfel&#039;d twist of multiplier <span class="searchmatch">Hopf</span> <span class="searchmatch">algebras</span>”, in arXiv‎[1]: Finally, for a counimodular <span class="searchmatch">algebraic</span> quantum...


shuffle algebra

Wikipedia has an article on: shuffle <span class="searchmatch">algebra</span> Wikipedia shuffle <span class="searchmatch">algebra</span> (plural shuffle <span class="searchmatch">algebras</span>) (mathematics) A <span class="searchmatch">Hopf</span> <span class="searchmatch">algebra</span> with a basis corresponding to words...


cocommutativity

2015, Karen Yeats, “A <span class="searchmatch">Hopf</span> <span class="searchmatch">algebraic</span> approach to Schur function identities”, in arXiv‎[1]: Using cocommutativity of the <span class="searchmatch">Hopf</span> <span class="searchmatch">algebra</span> of symmetric functions...


cobraided

2016, Tianshui Ma, Haiying Li, Tao Yang, “Cobraided Smash Product Hom-<span class="searchmatch">Hopf</span> <span class="searchmatch">Algebras</span>”, in Colloquium Mathematicum‎[1], volume 134, pages 75–92: Moreover...


shuffle product

shuffle product Wikipedia shuffle product (plural shuffle products) (mathematics) The sum of all ways of interlacing of words on some set in <span class="searchmatch">Hopf</span> <span class="searchmatch">algebra</span>....


algebra

<span class="searchmatch">Hopf</span> <span class="searchmatch">algebra</span> Hurwitz <span class="searchmatch">algebra</span> hyperalgebra Iwahori-Hecke <span class="searchmatch">algebra</span> Jordan <span class="searchmatch">algebra</span> Kac-Moody <span class="searchmatch">algebra</span> k-<span class="searchmatch">algebra</span> Kleene <span class="searchmatch">algebra</span> Leibniz <span class="searchmatch">algebra</span> Lie <span class="searchmatch">algebra</span>...


cosemisimple

Yetter-Drinfeld modules of a cosemisimple <span class="searchmatch">Hopf</span> <span class="searchmatch">algebra</span> H {\displaystyle H} and such that the Nichols <span class="searchmatch">algebra</span> B ( V ) {\displaystyle {\mathfrak {B}}(V)}...