DescriptionArctanh - 2.png Čeština: Graf hyperbolického arkus tangens Date 4.10.2009 Source Own work Author Filip Albert...
{r_{2}}}(r_{2}+6)\right)+2\ln \left({\frac {r_{2}-2}{r_{1}-2}}\right)-4\ arctanh{\sqrt {2/r_{1}}}+4\ arctanh{\sqrt {2/r_{2}}}}}} for ingoing geodesics...
{r_{2}}}(r_{2}+6)\right)+2\ln \left({\frac {r_{2}-2}{r_{1}-2}}\right)-4\ arctanh{\sqrt {2/r_{1}}}+4\ arctanh{\sqrt {2/r_{2}}}}}} for ingoing geodesics...
{r_{2}}}(r_{2}+6)\right)+2\ln \left({\frac {r_{2}-2}{r_{1}-2}}\right)-4\ arctanh{\sqrt {2/r_{1}}}+4\ arctanh{\sqrt {2/r_{2}}}}}} for ingoing geodesics...
{r_{2}}}(r_{2}+6)\right)+2\ln \left({\frac {r_{2}-2}{r_{1}-2}}\right)-4\ arctanh{\sqrt {2/r_{1}}}+4\ arctanh{\sqrt {2/r_{2}}}}}} for ingoing geodesics...
{r_{2}}}(r_{2}+6)\right)+2\ln \left({\frac {r_{2}-2}{r_{1}-2}}\right)-4\ arctanh{\sqrt {2/r_{1}}}+4\ arctanh{\sqrt {2/r_{2}}}}}} for ingoing geodesics...
{r_{2}}}(r_{2}+6)\right)+2\ln \left({\frac {r_{2}-2}{r_{1}-2}}\right)-4\ arctanh{\sqrt {2/r_{1}}}+4\ arctanh{\sqrt {2/r_{2}}}}}} for ingoing geodesics...
{r_{2}}}(r_{2}+6)\right)+2\ln \left({\frac {r_{2}-2}{r_{1}-2}}\right)-4\ arctanh{\sqrt {2/r_{1}}}+4\ arctanh{\sqrt {2/r_{2}}}}}} for ingoing geodesics...
{r_{2}}}(r_{2}+6)\right)+2\ln \left({\frac {r_{2}-2}{r_{1}-2}}\right)-4\ arctanh{\sqrt {2/r_{1}}}+4\ arctanh{\sqrt {2/r_{2}}}}}} for ingoing geodesics...
{r_{2}}}(r_{2}+6)\right)+2\ln \left({\frac {r_{2}-2}{r_{1}-2}}\right)-4\ arctanh{\sqrt {2/r_{1}}}+4\ arctanh{\sqrt {2/r_{2}}}}}} for ingoing geodesics...