<span class="searchmatch">Lie</span> <span class="searchmatch">algebra</span> Wikipedia Named in honor of Sophus <span class="searchmatch">Lie</span> (1842–1899), a Norwegian mathematician, in the 1930s by Hermann Weyl. IPA(key): /liː.ældʒɨbɹə/ <span class="searchmatch">Lie</span>...
<span class="searchmatch">Lie</span> <span class="searchmatch">algebras</span> plural of <span class="searchmatch">Lie</span> <span class="searchmatch">algebra</span>...
Algebra f (genitive <span class="searchmatch">Algebra</span>, plural Algebren) <span class="searchmatch">algebra</span> Declension of <span class="searchmatch">Algebra</span> [feminine] Banachalgebra <span class="searchmatch">Lie</span>-<span class="searchmatch">Algebra</span> Vektoralgebra lineare <span class="searchmatch">Algebra</span> →? Bulgarian:...
Liejeva <span class="searchmatch">algebra</span> f (Cyrillic spelling Лиејева алгебра) <span class="searchmatch">Lie</span> <span class="searchmatch">algebra</span>...
eigensection (plural eigensections) (<span class="searchmatch">algebra</span>) A homogenous section whose associated Eulerian family diagonalizes a given element of a <span class="searchmatch">Lie</span> <span class="searchmatch">algebra</span>....
<span class="searchmatch">Lie</span> group is, at least locally near the identity, completely described by its <span class="searchmatch">Lie</span> <span class="searchmatch">algebra</span>. topological group circle group Möbius group group of <span class="searchmatch">Lie</span> type...
Li Guo, “Totally compatible associative and <span class="searchmatch">Lie</span> dialgebras, tridendriform <span class="searchmatch">algebras</span> and Post<span class="searchmatch">Lie</span> <span class="searchmatch">algebras</span>”, in Science in China Math[1], volume 57, pages...
Hopf <span class="searchmatch">algebra</span> Hurwitz <span class="searchmatch">algebra</span> hyperalgebra Iwahori-Hecke <span class="searchmatch">algebra</span> Jordan <span class="searchmatch">algebra</span> Kac-Moody <span class="searchmatch">algebra</span> k-<span class="searchmatch">algebra</span> Kleene <span class="searchmatch">algebra</span> Leibniz <span class="searchmatch">algebra</span> <span class="searchmatch">Lie</span> <span class="searchmatch">algebra</span> linear...
who independently discovered them. Kac-Moody <span class="searchmatch">algebra</span> (plural Kac-Moody <span class="searchmatch">algebras</span>) (mathematics) A <span class="searchmatch">Lie</span> <span class="searchmatch">algebra</span>, usually infinite-dimensional, that can be...
Leibniz <span class="searchmatch">algebras</span>”, in arXiv[1]: Namely, we consider the hemisemidirect product h of a semidirect product <span class="searchmatch">Lie</span> <span class="searchmatch">algebra</span> g\ltimes M of a simple <span class="searchmatch">Lie</span> <span class="searchmatch">algebra</span> g with...