<span class="searchmatch">functor</span> <span class="searchmatch">categories</span> plural of <span class="searchmatch">functor</span> <span class="searchmatch">category</span>...
article on: <span class="searchmatch">functor</span> <span class="searchmatch">category</span> Wikipedia <span class="searchmatch">functor</span> <span class="searchmatch">category</span> (plural <span class="searchmatch">functor</span> <span class="searchmatch">categories</span>) (<span class="searchmatch">category</span> theory) A <span class="searchmatch">category</span> whose objects are <span class="searchmatch">functors</span> (from some...
endofunctor In the <span class="searchmatch">category</span> of <span class="searchmatch">categories</span>, C A T {\displaystyle \mathbb {CAT} } , the objects are <span class="searchmatch">categories</span> and the morphisms are <span class="searchmatch">functors</span>. 1991, Natalie...
has an article on: forgetful <span class="searchmatch">functor</span> Wikipedia forgetful <span class="searchmatch">functor</span> (plural forgetful <span class="searchmatch">functors</span>) (<span class="searchmatch">category</span> theory) a <span class="searchmatch">functor</span> that forgets or drops some or...
representable <span class="searchmatch">functor</span>. representable <span class="searchmatch">functor</span> (plural representable <span class="searchmatch">functors</span>) (<span class="searchmatch">category</span> theory) A <span class="searchmatch">functor</span> from some <span class="searchmatch">category</span> to the <span class="searchmatch">category</span> of sets (Set)...
identity <span class="searchmatch">functor</span> (plural identity <span class="searchmatch">functors</span>) (<span class="searchmatch">category</span> theory) A <span class="searchmatch">functor</span> from a <span class="searchmatch">category</span> to itself which maps each object of that <span class="searchmatch">category</span> to itself and...
contravariant <span class="searchmatch">functor</span> (plural contravariant <span class="searchmatch">functors</span>) (<span class="searchmatch">category</span> theory) A <span class="searchmatch">functor</span> which maps a morphism f:X → Y to a morphism F(f):F(Y) → F(X), such that...
article on: full and faithful <span class="searchmatch">functors</span> Wikipedia faithful <span class="searchmatch">functor</span> (plural faithful <span class="searchmatch">functors</span>) (<span class="searchmatch">category</span> theory) A <span class="searchmatch">functor</span> which maps morphisms from its...
faithful <span class="searchmatch">functors</span> Wikipedia full <span class="searchmatch">functor</span> (plural full <span class="searchmatch">functors</span>) (<span class="searchmatch">category</span> theory) A <span class="searchmatch">functor</span> which maps morphisms from its source to its target <span class="searchmatch">category</span> in such...
Yoneda <span class="searchmatch">functor</span> (plural Yoneda <span class="searchmatch">functors</span>) (<span class="searchmatch">category</span> theory) A <span class="searchmatch">functor</span> from a given <span class="searchmatch">category</span> to the <span class="searchmatch">category</span> of <span class="searchmatch">functors</span> from that given <span class="searchmatch">category</span> to Set...