Wikipedia has an article on: <span class="searchmatch">maximal</span> <span class="searchmatch">ideal</span> Wikipedia <span class="searchmatch">maximal</span> <span class="searchmatch">ideal</span> (plural <span class="searchmatch">maximal</span> <span class="searchmatch">ideals</span>) (algebra, ring theory) An <span class="searchmatch">ideal</span> which cannot be made any larger...
<span class="searchmatch">maximal</span> <span class="searchmatch">ideals</span> plural of <span class="searchmatch">maximal</span> <span class="searchmatch">ideal</span>...
maximal ideal minimal left <span class="searchmatch">ideal</span> minimal right <span class="searchmatch">ideal</span> <span class="searchmatch">Ideal</span> on Wikipedia.Wikipedia <span class="searchmatch">Maximal</span> <span class="searchmatch">ideal</span> on Wikipedia.Wikipedia Minimal <span class="searchmatch">ideal</span> on Encyclopedia of Mathematics...
with a unique <span class="searchmatch">maximal</span> <span class="searchmatch">ideal</span>, or a noncommutative ring with a unique <span class="searchmatch">maximal</span> left <span class="searchmatch">ideal</span> or (equivalently) a unique <span class="searchmatch">maximal</span> right <span class="searchmatch">ideal</span>. Hyponyms: simple...
two <span class="searchmatch">maximal</span> elements: { 1 , 2 } {\displaystyle \{1,2\}} and { 2 , 3 } {\displaystyle \{2,3\}} maximum (adjective) minimal halfmaximal <span class="searchmatch">maximal</span> <span class="searchmatch">ideal</span> maximal...
uniformizing parameter (plural uniformizing parameters) (commutative algebra) An element of a discrete valuation ring which generates the unique <span class="searchmatch">maximal</span> <span class="searchmatch">ideal</span>....
(plural discrete valuation rings) (algebra, ring theory) A local principal <span class="searchmatch">ideal</span> domain whose unique <span class="searchmatch">maximal</span> <span class="searchmatch">ideal</span> is not the zero <span class="searchmatch">ideal</span>. Synonym: DVR...
See also: <span class="searchmatch">Ideal</span>, <span class="searchmatch">ideał</span>, <span class="searchmatch">ideál</span>, and <span class="searchmatch">idéal</span> English Wikipedia has an article on: <span class="searchmatch">Ideal</span> Wikipedia From French <span class="searchmatch">idéal</span>, from Late Latin ideālis (“existing in...
Wikipedia has an article on: Semi-local ring Wikipedia semilocal (not comparable) (mathematics) Describing a ring that has a finite number of <span class="searchmatch">maximal</span> <span class="searchmatch">ideals</span>...
fields) (algebra) The quotient ring of a commutative ring divided by one of its <span class="searchmatch">maximal</span> <span class="searchmatch">ideals</span>; by a certain theorem such a quotient ring must be a field....