<span class="searchmatch">ordered</span> <span class="searchmatch">sets</span> plural of <span class="searchmatch">ordered</span> <span class="searchmatch">set</span>...
partially <span class="searchmatch">ordered</span> <span class="searchmatch">sets</span> plural of partially <span class="searchmatch">ordered</span> <span class="searchmatch">set</span>...
totally <span class="searchmatch">ordered</span> <span class="searchmatch">sets</span> plural of totally <span class="searchmatch">ordered</span> <span class="searchmatch">set</span>...
article on: partially <span class="searchmatch">ordered</span> <span class="searchmatch">set</span> Wikipedia partially <span class="searchmatch">ordered</span> <span class="searchmatch">set</span> (plural partially <span class="searchmatch">ordered</span> <span class="searchmatch">sets</span>) (<span class="searchmatch">set</span> theory, order theory, loosely) A <span class="searchmatch">set</span> that has a given...
<span class="searchmatch">ordered</span> <span class="searchmatch">set</span> (plural <span class="searchmatch">ordered</span> <span class="searchmatch">sets</span>) (mathematics) A partially <span class="searchmatch">ordered</span> <span class="searchmatch">set</span>. (mathematics) A totally <span class="searchmatch">ordered</span> <span class="searchmatch">set</span>. (mathematics) A well-<span class="searchmatch">ordered</span> <span class="searchmatch">set</span>. This term...
totally <span class="searchmatch">ordered</span> <span class="searchmatch">set</span> (plural totally <span class="searchmatch">ordered</span> <span class="searchmatch">sets</span>) (<span class="searchmatch">set</span> theory) A <span class="searchmatch">set</span> having a specified total order....
ordered pair <span class="searchmatch">ordered</span> ring <span class="searchmatch">ordered</span> <span class="searchmatch">set</span> partially <span class="searchmatch">ordered</span> partially <span class="searchmatch">ordered</span> <span class="searchmatch">set</span> time-<span class="searchmatch">ordered</span> totally <span class="searchmatch">ordered</span> totally <span class="searchmatch">ordered</span> <span class="searchmatch">set</span> well-<span class="searchmatch">ordered</span> in order, not...
Numbers, <span class="searchmatch">Sets</span> and Axioms: The Apparatus of Mathematics, Cambridge University Press, page 91: The <span class="searchmatch">set</span> {1, 2, 3, 4, 6, 8, 12, 24}, <span class="searchmatch">ordered</span> by 'divides'...
appropriate structure for modeling rough <span class="searchmatch">sets</span> in a generalized relational setting. See notes at partially <span class="searchmatch">ordered</span> <span class="searchmatch">set</span>. partially <span class="searchmatch">ordered</span> <span class="searchmatch">set</span> Translations...
the Cartesian product of n <span class="searchmatch">ordered</span> <span class="searchmatch">sets</span>, (b) on the Cartesian product of a countably infinite family of <span class="searchmatch">ordered</span> <span class="searchmatch">sets</span>, and (c) on the union of such <span class="searchmatch">sets</span>....