{-(1/Sqrt[<span class="searchmatch">2</span>]), 1/Sqrt[<span class="searchmatch">2</span>], 0, 0, 0, 0, 0, 0};new; Credit: User:Tomruen for sharing basis vectors resulting in my code for n-<span class="searchmatch">cube</span> <span class="searchmatch">Pascal</span> projections: do<span class="searchmatch">Cube</span>Pascal@n_ :=...
vertices in each column represents rows in <span class="searchmatch">Pascal's</span> triangle, being 1:7:21:35:35:21:7:1 in the case of a 7-<span class="searchmatch">cube</span>. The 448 edges of unit length have colors...
n-<span class="searchmatch">cube</span> <span class="searchmatch">Pascal</span> projections: do<span class="searchmatch">Cube</span><span class="searchmatch">Pascal</span>@n_ := ( H = Normalize@Join[Array[1 &, n],Array[0 &, 8 - n]]; V = Normalize@Join[Table[i, {i, -(n - 1), n - 1, <span class="searchmatch">2</span>}]...
n-<span class="searchmatch">cube</span> <span class="searchmatch">Pascal</span> projections: do<span class="searchmatch">Cube</span><span class="searchmatch">Pascal</span>@n_ := ( H = Normalize@Join[Array[1 &, n],Array[0 &, 8 - n]]; V = Normalize@Join[Table[i, {i, -(n - 1), n - 1, <span class="searchmatch">2</span>}]...
n-<span class="searchmatch">cube</span> <span class="searchmatch">Pascal</span> projections: do<span class="searchmatch">Cube</span><span class="searchmatch">Pascal</span>@n_ := ( H = Normalize@Join[Array[1 &, n],Array[0 &, 8 - n]]; V = Normalize@Join[Table[i, {i, -(n - 1), n - 1, <span class="searchmatch">2</span>}]...
n-<span class="searchmatch">cube</span> <span class="searchmatch">Pascal</span> projections: do<span class="searchmatch">Cube</span><span class="searchmatch">Pascal</span>@n_ := ( H = Normalize@Join[Array[1 &, n],Array[0 &, 8 - n]]; V = Normalize@Join[Table[i, {i, -(n - 1), n - 1, <span class="searchmatch">2</span>}]...
newPTcd={ {1/(<span class="searchmatch">2</span>*Sqrt[<span class="searchmatch">2</span>]), 1/(<span class="searchmatch">2</span>*Sqrt[<span class="searchmatch">2</span>]), 1/(<span class="searchmatch">2</span>*Sqrt[<span class="searchmatch">2</span>]), 1/(<span class="searchmatch">2</span>*Sqrt[<span class="searchmatch">2</span>]), 1/(<span class="searchmatch">2</span>*Sqrt[<span class="searchmatch">2</span>]), 1/(<span class="searchmatch">2</span>*Sqrt[<span class="searchmatch">2</span>]), 1/(<span class="searchmatch">2</span>*Sqrt[<span class="searchmatch">2</span>]), 1/(<span class="searchmatch">2</span>*Sqrt[<span class="searchmatch">2</span>])}, {-Sqrt[7/6]/<span class="searchmatch">2</span>, -5/(<span class="searchmatch">2</span>*Sqrt[42])...
rijkswaterstaat.jpg Licence : CC BY <span class="searchmatch">2</span>.5 53 Contributeurs : Travail personnel Artiste d’origine : Vdegroot Fichier:Commons-logo.<span class="searchmatch">svg</span> Source : https://upload.wikimedia...
Description4-<span class="searchmatch">cube</span>Petrie.<span class="searchmatch">svg</span> English: 4-<span class="searchmatch">cube</span> Petrie projection showing <span class="searchmatch">Pascal</span> Triangle vertex counts in each column. Vertex colors are colored based on...
Description6-<span class="searchmatch">cube</span> column graph.<span class="searchmatch">svg</span> English: 6-hypercube (hexeract) graph. This hypercube graph is an orthogonal projection. This oriented projection shows...