18:13 Unown 818×366× (6907 bytes) This plot can be produced by Wolfram Mathematica with following code: <code>Plot[{Erf[x], 1, -1}, {x, -3, 3}, AxesLabel...
to gif with the command (run in command shell) % convert -antialias -loop 10000 -delay 10 -scale 50% Frame10* Drum_vibration_mode12.gif function r =...
function main() k = 0; % k-th asimuthal number and bessel function p = 3; % p-th bessel root q=find_pth_bessel_root(k, p); N=20; % used for plotting %...
function main() k = 0; % k-th asimuthal number and bessel function p = 1; % p-th bessel root q=find_pth_bessel_root(k, p); N=20; % used for plotting %...
function main() k = 1; % k-th asimuthal number and bessel function p = 3; % p-th bessel root q=find_pth_bessel_root(k, p); N=20; % used for plotting %...
function main() k = 2; % k-th asimuthal number and bessel function p = 3; % p-th bessel root q=find_pth_bessel_root(k, p); N=20; % used for plotting %...
function main() k = 0; % k-th asimuthal number and bessel function p = 2; % p-th bessel root q=find_pth_bessel_root(k, p); N=20; % used for plotting %...
function main() k = 1; % k-th asimuthal number and bessel function p = 1; % p-th bessel root q=find_pth_bessel_root(k, p); N=20; % used for plotting %...
function main() k = 2; % k-th asimuthal number and bessel function p = 1; % p-th bessel root q=find_pth_bessel_root(k, p); N=20; % used for plotting %...
% converted to gif with the command % convert -antialias -loop 10000 -delay 10 -scale 50% Frame10* Drum_vibration_mode22.gif function r = find_pth_bessel_root(k...